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Abstract. This paper presents the results of an empirical study on the
use of broadening and heuristics to improve search. We compare the
performance of hill-climbing algorithms with different search breadth.
Broadening the alternatives for hill-climbing yields small improvement
in search results and is not generally worth the performance penalty
incurred. In fact, evidence shows that broadening can degrade results.
By contrast, even simple heuristics show great improvement, especially
when combined with broadening, leading to conclusions about how to
spend limited search resources most effectively.

Keywords: hill-climbing, heuristic search, broadening, gradient ascent

1 Introduction

Gradient ascent, also known as hill-climbing, is a fundamental search technique
that operates efficiently without needing much memory. Starting with a random
position, the best alternative move to a “neighboring” position is taken itera-
tively until no improvement is possible. With luck, the best possible position, or
optimum, is found. The problems with gradient ascent are well known, including:

Plateau which has no gradient, so that all neighbors are equal.
Ridge where no single step improves things, but where a small step down can be
followed by a larger step up.
Local Maximum where all nearby positions are worse, but which falls short of the optimum.
Steep Optimum where the best solution is surrounded by relatively unpromising territory,
making it unlikely to be encountered.

Several solutions to these problems exist, including random restart and simu-
lated annealing [2,3]. Random restart repeatedly runs the hill-climbing algorithm
from randomly generated starting positions, with the hope that at least one of
the trials will start on the optimal hill. Simulated annealing allows some non-
increasing steps to try to escape local maxima, ridges, and plateaus.

Neither random restart nor simulated annealing will usually be lucky enough
to solve the steep optimum problem. The best solution in this case is to have some
heuristic estimate to guide the search. The heuristic estimates the long-term
promise of the particular position, rather than its actual score. Thus, the area
around the steep optimum, which scores low, can still “look good” heuristically.



Each of these techniques (hill-climbing, simulated annealing, heuristic evalu-
ation) can be augmented by broadening the search. Instead of considering just a
few neighbors at each iteration, the neighborhood is extended outward to include
more candidates. There are several variants of broadening, including macros [4],
which consider selected promising more-distant neighbors based on past results.
The ultimate broadening considers all possible solutions and will locate the op-
timum, but with unacceptable consequence to the search space size. Limited
broadening may help avoid the problems associated with gradient ascent with-
out overly slowing search.

In order to study the effect of broadening on hill-climbing algorithms, we
use a problem with a large search space, many local maxima, and with a steep
optimum.

2 The Problem

The particular problem, inspired by a magazine contest [1], uses the game “poker
solitaire”. In this game, twenty-five cards are dealt from a standard deck in a five-
by-five grid. Each row, column and the two diagonals of the grid are evaluated
as poker hands, scoring a varying number of points. The goal is to reposition the
cards!, maximizing the sum of the twelve scores (five rows, five columns, two
diagonals). The score for each hand is:

pair (1 point) two of the five cards have the same rank.
two pair (3 points) two pairs amongst the five cards.
three of a kind (5 points) three of the five cards have the same rank.
straight (7 points) the five cards may be arranged in sequence, e.g., 8-6-9-7-5. Aces
may be high (above King) or low (below 2).
flush (10 points) All five cards are the same suit.
full house (12 points) one pair and three of a kind.
four of a kind (25 points) four of the five cards have the same rank.
straight-flush (50 points) both a straight and a flush.

The basic hill-climbing algorithm starts with a random grid of twenty-five
cards and then swaps pairs of cards in the grid, as long as the score continues to
improve. This algorithm can be broadened allowing consideration of more than
two cards at a time for swapping. However, the number of neighbors when &
cards are swapped is found by determining the possible combinations of k cards
taken from twenty-five and multiplying that by the number of ways those cards
can be ordered. For example, when swapping three cards (A, B, and C), A may
replace B which replaces C, or A may replace C which replaces B. Removing
symmetries, the number of possible moves involving & cards is:

25!

B(k) = k(25 — k)!

! In the original game of poker solitaire, cards are placed one at a time and may not
be moved. The whole point of our game is to allow movement of cards in the grid.



which grows formidably. B(2) = 300, B(3) = 4600, and and B(4) = 75900. Thus,
the benefit of broadening will need to be remarkable to outweigh its enormous
cost.

This problem also often has a steep optimum. This can be seen by observing
that four cards in a straight-flush combined with one bad card scores no points,
while swapping that one mismatched card may immediately lead to fifty more
points. Even a simple four-flush (four of five cards with the same suit) scores no
points, while one swap will score ten. To help solve the steep optimum problem,
we employ a simple heuristic estimate with positive values for promising hands
that would otherwise score less. Choosing particular values is difficult, since the
promise may not pay off, but given the immense relative value of a straight-flush,
a four-straight-flush is quite promising and even a three-straight-flush is worth
consideration. Experimentally, we demonstrate the value of this simple heuristic
in conjunction with broadening.

3 Experiments

To measure the cost and value of broadening and heuristics, 1038 sets of twenty-
five cards were randomly selected. For each set, one hundred random starting
grids were generated. For each random grid, we ran both regular and heuristic
hill-climbing with £ = 2 and & = 3. In the £ = 3 case, we selected the best
choice from all three-way or a two-way swaps (thus, the branching factor is
really B(2) + B(3) = 4900). In the case of heuristic hill-climbing, after the
heuristic stops improving we took measurements and continued with the regular
hill-climbing algorithm to termination. Thus, there are six variants:

. hill-climbing with k = 2

. hill-climbing with £ = 3

. heuristic hill-climbing with k£ = 2

. heuristic hill-climbing with £ = 3

. heuristic hill-climbing, followed by hill-climbing, both with & = 2
. heuristic hill-climbing, followed by hill-climbing, both with & =3

S O W N =

We measured the distributions for both scores and depths along with statis-
tics about how frequently each version of the algorithm yielded the optimum.
Since there is no way to determine the true optimum, we used the best result
found on any run by any variant. It is possible that obscure optimums could
elude detection.

Fig. 1 compares the final score distributions for each of the six variants (av-
erage scores for each method are listed in Fig. 2). Qualitatively, the curves are
in three distinct pairs — hill-climbing, heuristic hill-climbing, and heuristic hill-
climbing with follow; broadening the search has negligible qualitative effect. The
average score increase due to broadening is between four and five points, repre-
senting an improvement around five percent.

Further, we discovered that broadening to & = 3 only outperforms £ = 2 in
57% of the hill-climbing runs, with similar results for heuristic variants. In the
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Fig. 1. Score distribution for six versions

other 43%, the narrower hill-climb found as good or better a result. Broadening
may not help and was harmful 27% of the time!

Another surprise is that while the heuristic performs poorly on its own, with
the followup of hill-climbing it is by far the best. Thus, a very simple heuristic
can lead to a spot where blind search can follow up successfully.

|method |avg. score|avg. depth|avg. cost| win %|
hill-climbing & = 2 65.91 9.65 2895| 1.15%
hill-climbing & = 3 69.36 7.54|  36946| 6.35%
heur. hill-climbing & = 2 64.61 12.61 3783| 5.39%
heur. hill-climbing & =3 69.65 10.02| 49098|10.11%
heur. hill-climbing w/ follow, k = 2 89.01 16.89 5067|34.26%
heur. hill-climbing w/ follow, k = 3 93.84 13.39| 65611|46.20%

Fig. 2. Algorithm Measurements

The point of the problem, however, was not to find the best average score,
but to find the optimum from as many different starting deals as possible. For
this task, broadening and heuristics both prove useful, as shown in the final
column of Fig. 2. In all variants, broadening leads to more chance of locating the



optimum over a run of one hundred tests. Further, this chance rises substantially
more when the heuristic was followed by basic hill-climbing.

Let us turn to measuring the depths of the search. The deeper a search goes,
the more it costs. Fig. 2 shows the average depth and estimated average cost for
each method. The cost is determined by multiplying the depth by the branching
factor, since only the single best choice is evaluated at each step. The immense
cost of broadening becomes clear here, as the cost with & = 3 is approximately
thirteen times the cost with £ = 2. Instead of paying the computational price of
broadening, we could use that time for more random restarts. Over a thousand
random runs with £ = 2 can be run for the same price as one hundred runs with

k=3.
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Fig. 3. Distribution of Number of Iterations

Fig. 3 shows the distributions of the number of iterations for each variant.
In each scenario, broadening offers approximately twenty percent reduction in
the number of iterations, not nearly enough to overcome the additional cost of
evaluating so many alternatives.

4 Conclusion

The evidence suggests taking a pessimistic view of broadening. In general, a
few well-chosen alternatives [6] will outperform a broad search of all close al-



ternatives. Broadening by a factor of twelve offered about a ten percent overall
improvement in the quality of search results. Meanwhile, even a simple heuristic
with £ = 2 dominated searching with k& = 3.

In practice, the solution to the particular original magazine problem was
solved on a Sun SPARCstation 5 taking about a week. With broadening to k& = 3,
the optimal solution was found in a few days, and with heuristics the algorithm
took less than an hour. There were several hundred successful entrants to the
magazine contest (perhaps calculated by hand, perhaps by computer), so our
entry did not win.

Since submission of this paper, we have also used poker solitaire as a home-
work problem in our introductory artificial intelligence class. The students were
required to determine the cost of an optimal solution using breadth-first search
and then to identify a promising heuristic. The student heuristics were consid-
erably varied and under comparison in a follow-up experiment.

Improvement due to broadening and improvement due to the use of heuristics
seems to be nearly independent. This suggests that broadening could be used in
conjunction with heuristics for promising search runs, but not for all cases.

The impact of broadening must also enter into calculations when considering
techniques such as macros, which exchange breadth for depth. Broadening can
be worthwhile, but must be done with care and discrimination to be useful.
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