
Pacific Northwest Region

Programming Contest

Division 1

November 15th, 2014

Reminders

• For all problems, read the input data from standard input and write the results to standard
output.

• In general, when there is more than one integer or word on an input line, they will be separated
from each other by exactly one space. No input lines will have leading or trailing spaces, and
tabs will never appear in any input.

• Platform is as follows:

Ubuntu 14.04.1 LTS x86_64

geany

java version 1.7.0_65

c/c++ gcc version 4.8.2

eclipse 4.4 with CDT 8.4

Python 2.7.6 (IDE support)

Python 3.4.0 (syntax highlighting editor support)

• Compiler options are as follows:

g++ -g -O2 -std=gnu++0x -static $*

gcc -g -O2 -std=gnu99 -static $* -lm

javac -encoding UTF-8 -sourcepath . -d . $* runjava

java -client -Xss8m -Xmx1024m $*

python $*

• Python may not have sufficient performance for many of the problems; use it at your discre-
tion.

2014 Pacific Northwest Region Programming Contest—Division 1 2

Problem A — limit 5 seconds

Runes

You are helping an archaeologist decipher some runes. He knows that this ancient society used a
Base 10 system, and that they never start a number with a leading zero. He’s figured out most of
the digits as well as a few operators, but he needs your help to figure out the rest.

The professor will give you a simple math expression. He has converted all of the runes he knows
into digits. The only operators he knows are addition (+), subtraction (-), and multiplication (*),
so those are the only ones that will appear. Each number will be in the range from −999, 999 to
999, 999, and will consist of only the digits ‘0’–‘9’, possibly a leading ‘-’, and a few ‘?’s. The ‘?’s
represent a digit rune that the professor doesn’t know (never an operator, an ‘=’, or a leading ‘-’).
All of the ‘?’s in an expression will represent the same digit (0–9), and it won’t be one of the other
given digits in the expression.

Given an expression, figure out the value of the rune represented by the question mark. If
more than one digit works, give the lowest one. If no digit works, well, that’s bad news for the
professor—it means that he’s got some of his runes wrong. Output −1 in that case.

Input

The sample data will start with the number of test cases T (1 ≤ T ≤ 100). Each test case will
consist of a single line, of the form:

[number][op][number]=[number]

Each [number] will consist of only the digits ‘0’-‘9’, with possibly a single leading minus ‘-’, and
possibly some ‘?’s. No number will begin with a leading ‘0’ unless it is 0, no number will begin
with -0, and no number will have more than 6 characters (digits or ?s). The [op] will separate the
first and second [number]s, and will be one of: +, - or *. The = will always be present between the
second and third [number]s. There will be no spaces, tabs, or other characters. There is guaranteed
to be at least one ? in every equation.

Output

Output the lowest digit that will make the equation work when substituted for the ?s, or output
−1 if no digit will work. Output no extra spaces or blank lines.

Sample Input Sample Output

5

1+1=?

123*45?=5?088

-5?*-1=5?

19--45=5?

??*??=302?

2

6

0

-1

5

2014 Pacific Northwest Region Programming Contest—Division 1 3

2014 Pacific Northwest Region Programming Contest—Division 1 4

Problem B — limit 20 seconds

Alchemy

Since the days of yore alchemy has been studied and practiced. The practice makes alchemists able
to transmute materials into other forms. Transmuting materials requires drawing a transmutation
circle on the ground. A little known fact about transmutation circles is they can be drawn inside
other transmutation circles. By activating certain configurations in the correct order, more powerful
transmutations can be produced. Activating circles incorrectly can have drastic effects on the
alchemist’s body.

A young alchemist named Nicholas Flamel would like to learn the ways of alchemy. He has
drawn several configurations of transmutation circles on the ground. When a circle is activated it
burns bright red representing the element of fire. The activation itself produces no extra energy.
The secret is when an outer transmutation circle is activated. When this occurs, all already active
circles in the area of the activated circle quickly change to their respective complement elements.
Fire changes to a cool blue representing water. Circles that were blue for water will burn fiery
red once again. This change can either create or drain energy from the transmutation. Beware,
energy can go negative at any time by temporarily draining the alchemist’s life force (but the spell
continues to work just fine).

Nicholas wants to get as much out of his transmutations as possible. To do so requires him to
activate all his circles in an order that releases the most energy. Determine the maximum amount
of energy that can be released.

Input

Input will start with a single line with an integer T giving the number of test cases, between 1
and 100 inclusive. For each set of transmutation circles there will be a line with a number N ,
1 ≤ N ≤ 2000. This represents the number of transmutation circles. The next N lines contain
spaced-separated integers X Y R A B. The first three integers represent the coordinates and radius
of the circle, while the last two represent the energy release for going from fire to water (A), and
water to fire (B). −10,000 ≤ X,Y ≤ 10,000; 1 ≤ R ≤ 10,000; −500 ≤ A,B ≤ 500.

No two circles will intersect or touch.

Output

For each set of transmutation circles print a single integer representing the maximum energy that
can be produced by activating the circles. On the following line print the permutation of the input

2014 Pacific Northwest Region Programming Contest—Division 1 5

circles that can produce that energy. If multiple permutations exist, print the one that comes first
lexicographically.

Sample Input Sample Output

1

8

0 0 100 -100 -100

0 0 50 -10 -10

0 0 10 -100 500

0 0 1 100 100

1000 1000 100 -1 1

1000 1000 50 -1 1

1000 1000 10 -1 1

1000 1000 1 -1 1

700

4 3 1 2 5 6 7 8

2014 Pacific Northwest Region Programming Contest—Division 1 6

Problem C — limit 30 seconds

Containment

A three-dimensional grid of atomic energy cells aboard the starship PacificNorthwestPassage is
reporting failures on several of its cells. The ship’s engineer must set up enclosures that will
contain all cells reported to be failing in order to avoid a meltdown. It is imperative that the
enclosures be finished in the shortest amount of time, even if that requires some healthy cells to
be enclosed along with the defective ones. The enclosures are formed by panels which can only be
inserted between cells (so each individual panel must be axis-aligned), and each panel separates
exactly two cells and requires one minute to set up. For full containment, each enclosure must form
a closed polytope. Given the coordinates of each defective cell, report how long it will take to finish
containing the problem.

Input

The input will start with a single line containing the number N giving the number of test cases,
1 ≤ N ≤ 100. Each test case will start with a single line giving the number F , 1 ≤ F ≤ 100, the
number of failing cells. Following this will be F lines each with three integers xi, yi, zi, all between
0 and 9, inclusive, giving the locations of the failing cells. For each test case, each triple (xi, yi, zi)
will be unique.

Output

For each test case, print on a single line the minimum number of minutes required to fully contain
the problem.

Sample Input Sample Output

3

1

0 0 0

2

0 0 0

0 0 1

3

0 0 0

0 0 1

0 1 1

6

10

14

2014 Pacific Northwest Region Programming Contest—Division 1 7

2014 Pacific Northwest Region Programming Contest—Division 1 8

Problem D — limit 5 seconds

Function
Given a function defined by:

Let t = n/m; z[t] =

{
(a + (b + rt2)z[−1 − 2t])/r if t ≤ 0

(c + (d + rt2)z[1 − 2t])/r if t > 0

Given integer a, b, c, d, n,m, and r, evaluate z[t] (as a floating point number).

1 ≤ n ≤ m ≤ 100

1 ≤ b ≤ r

1 ≤ d ≤ r

1 ≤ r ≤ 1000

1 ≤ a ≤ 1000

1 ≤ c ≤ 1000

There will be a solution. Your result must be accurate to within ±10−6 absolute error, or ±10−6

relative error.

Input

On the first line will be the number of functions to solve, between 1 and 100 inclusive. Following
that will be one line per function, giving the integer parameters separated by spaces in the order
n,m, a, b, c, d, r.

Output

The value of the z[n/m] should be printed in floating point format, one line per parameter set.

Sample Input Sample Output

3

1 1 1 1 1 1 1

2 3 1 2 3 4 10

2 3 5 6 7 8 9

-1

0.4225806452

4.111111111

2014 Pacific Northwest Region Programming Contest—Division 1 9

2014 Pacific Northwest Region Programming Contest—Division 1 10

Problem E — limit 5 seconds

Hill Number
A Hill Number is a number whose digits possibly rise and then possibly fall, but never fall and then
rise.

• 12321 is a hill number.

• 101 is not a hill number.

• 1111000001111 is not a hill number.

Given an integer n, if it is a hill number, print the number of hill numbers less than it. If it is not
a hill number, print -1.

Input

Input will start with a single line giving the number of test cases. Each test case will be a single
positive integer on a single line, with up to 70 digits. The result will always fit into a 64-bit long.

Output

For each test case, print -1 if the input is not a hill number. Print the number of hill numbers less
than the input value if the input value is a hill number.

Sample Input Sample Output

5

10

55

101

1000

1234321

10

55

-1

715

94708

2014 Pacific Northwest Region Programming Contest—Division 1 11

2014 Pacific Northwest Region Programming Contest—Division 1 12

Problem F — limit 60 seconds

Knights

Magnus is the youngest chess grandmaster ever. He loves chess so much that he has decided to
decorate his home with chess pieces. To decorate his long corridor, he has decided to use knights.
His corridor is covered by beautiful marble squares of M rows and N columns. He wants to put the
knights pieces into some (or possibly none) of these cells. Each cell will contain at most one knight.

The special thing in his arrangement is no pair of knights can attack each other. (Two knights
can attack each other if they are placed in opposite corner cells of a 2 by 3 rectangle).

Given the dimension of the long corridor, your task is to calculate how many ways Magnus can
arrange his knight pieces. Two arrangements are considered different if there exists a cell which
contains a knight in the first arrangement but not in the other arrangement.

Input

The first line of the input is the number of test cases T (T ≤ 10). Then T test cases follow.
Each test case consists of 2 numbers: M , the number of rows, and N , the number of columns.
(1 ≤ M ≤ 4, 1 ≤ N ≤ 109).

Output

For each test case, print the number of possible ways modulo 1,000,000,009 (109 + 9)

Sample Input Sample Output

4

1 2

2 2

3 2

4 31415926

4

16

36

413011760

2014 Pacific Northwest Region Programming Contest—Division 1 13

2014 Pacific Northwest Region Programming Contest—Division 1 14

Problem G — limit 5 seconds

Number Game

Alice and Bob are playing a game on a line of N squares. The line is initially populated with
one of each of the numbers from 1 to N . Alice and Bob take turns removing a single number from
the line, subject to the restriction that a number may only be removed if it is not bordered by a
higher number on either side. When the number is removed, the square that contained it is now
empty. The winner is the player who removes the 1 from the line. Given an initial configuration,
who will win, assuming Alice goes first and both of them play optimally?

Input

Input begins with a line with a single integer T , 1 ≤ T ≤ 100, denoting the number of test cases.
Each test case begins with a line with a single integer N , 1 ≤ N ≤ 100, denoting the size of the
line. Next is a line with the numbers from 1 to N , space separated, giving the numbers in line
order from left to right.

Output

For each test case, print the name of the winning player on a single line.

Sample Input Sample Output

4

4

2 1 3 4

4

1 3 2 4

3

1 3 2

6

2 5 1 6 4 3

Bob

Alice

Bob

Alice

2014 Pacific Northwest Region Programming Contest—Division 1 15

2014 Pacific Northwest Region Programming Contest—Division 1 16

Problem H — limit 5 seconds

Pushups

A friend of yours is on the cheer squad for their football team. Each time the team scores, the
cheer squad does pushups—one for each point the team has scored so far. If the teams scores a
touchdown (7 points), the squad does 7 pushups. If the team then scores a field goal (3 points),
the cheer squad does 10 pushups. If the team then scores a safety (2 points), the squad will do 12
pushups. At the end of that game, the squad will end up having done 7+10+12=29 pushups!

You meet your friend after a game, and they say “Boy, am I tired! I did a total of n pushups
at the game today!” and promptly collapse from exhaustion. Given n, the number of pushups, can
you figure out how the team scored? More than one score may be possible. For example, for 29
pushups, the team could have scored 3, then 2, then 2, then 7, for a total of 14 points. If so, find
the highest possible score.

Input

The input will start with a single number on the first line giving the number of test cases, between 1
and 20, inclusive. Each test case will begin with two integers N and M 1 ≤ N ≤ 5,000, 1 ≤ M ≤ 10
where N is the number of pushups the cheer squad did, and M is the number of ways a team can
score points in that sport. On the next line will be M unique integers Si, 1 ≤ Si ≤ 20, with a
single space between them, indicating the number of points the team gets for each kind of score.
The scores are independent; a team can accrue scores in any order.

Output

For each test case, output a single integer indicating the team’s final score. If more than one final
score can lead to the given number of pushups, output the largest one. If no final score can lead
to the given number of pushups, then your friend must have miscounted. In this case, output ‘-1’.
Output no extra spaces.

Sample Input Sample Output

4

29 3

7 3 2

15 1

1

16 1

1

6 2

3 1

14

5

-1

3

2014 Pacific Northwest Region Programming Contest—Division 1 17

2014 Pacific Northwest Region Programming Contest—Division 1 18

Problem I — limit 10 seconds

Salary Inequity

There is a large company of N employees. With the exception of one employee, everyone has a
direct supervisor. The employee with no direct supervisor is indirectly a supervisor of all other
employees in the company. We say that employee X is a subordinate of employee Y if either Y is
the direct supervisor of X, or the direct supervisor of X is a subordinate of Y .

One day, the HR department decides that it wants to investigate how much inequity there is
in the company with respect to salaries. For a given employee, the inequity of the employee is
the difference between the minimum salary of that employee and all his/her subordinates and the
maximum salary of that employee and all his/her subordinates.

HR wants to be able to compute the inequity for any employee quickly. However, this is
complicated by the fact that an employee will sometimes give himself/herself, along with all his/her
subordinates, a raise. Can you help?

Input

The first line of your input file contains a number T representing the number of companies you will
be analyzing for inequity. T will be at most 20.

For each company, there will be a line containing an integer N , representing the number of
employees at the company. Each employee is assigned an ID which is a unique integer from 1 to
N. The next line will contain N − 1 integers. The Kth integer in that line is the ID of the direct
supervisor of employee (K + 1). The next line will contain N integers, the Kth integer in this line
being the salary of employee K. The next line contains an integer Q, the number of events that
you will need to process. There are two types of events to process - raises and inequity queries. In
the event of a raise, the line will start with the letter R followed by the ID of the employee and an
integer representing the increase in salary for that employee and all his/her subordinates. In the
event of an inequity query, the line will start with the letter Q followed by the ID of the employee
for whom inequity needs to be determined.

2 <= N <= 1,000,000

1 <= Q <= 10,000

For every employee K, the ID of his/her supervisor will be less than K. Initial salaries will
range from 1 to 1,000. No raise will exceed 1,000.

2014 Pacific Northwest Region Programming Contest—Division 1 19

Output

For each inequity query, print the inequity of the employee on its own line.

Sample Input Sample Output

1

5

1 1 2 2

10 6 8 4 5

7

Q 2

Q 3

R 4 2

Q 2

Q 1

R 2 4

Q 1

2

0

1

5

2

2014 Pacific Northwest Region Programming Contest—Division 1 20

Problem J — limit 10 seconds

Stamp Stamp

Bureaucrats love bureaucracy. This assertion seems fairly obvious but a less obvious observation
is the amount of paperwork this means! When paperwork is complete, the bureaucrat stamps the
official document with their official stamp of office. Some bureaucrats are extra thorough and stamp
the document multiple times.

We are interested primarily in bureaucrats that stamp their documents twice. A bureaucrat
stamp takes up some rectangular area.

For example, below is a bureaucrat’s stamp:

..#..#..

.######.

..#..#..

When the bureaucrat stamps the paper twice, it is potentially moved to different location on
the paper but not rotated. The stamp will always be axis aligned.

The ‘#’ symbol on a stamp covers the paper with black ink at the cell on the paper that is
pressed. A ‘.’ doesn’t leave any marks on the paper nor does it remove a mark. If a cell of the
paper is marked twice it is undiscernable from a cell that is marked once.

You will be given a paper that was stamped twice by a stamp. Your task is to determine the
minimum number of nubs (# symbols) that could have possibly been on the original stamp. The
paper is guaranteed to be stamped twice by the entire stamp. (All of the stamp will be on the
paper in both stampings)

For example the above stamp could have made the following mark on paper:

..#..#..

.######.

.######.

..#..#..

Input

You are given a number T representing the number of pieces of paper to analyze, (1 ≤ T ≤ 100).
For each piece of paper, there will be two numbers L and W representing the length and width of
the paper, (1 <= W,L <= 300). The next L lines will each contain a string of length W . This
string will consist of only the characters ‘.’ and ‘#’. ‘.’ represents a white cell of paper. ‘#’
represents a cell covered in black ink.

At most 15 of the test cases will have a width or length greater than 80.

2014 Pacific Northwest Region Programming Contest—Division 1 21

Output

For each piece of paper, output the minimum number of nubs possible on the original stamp.

Sample Input Sample Output

5

4 8

..#..#..

.######.

.######.

..#..#..

3 3

...

.#.

...

2 6

.#####

#####.

2 5

.#.#.

#.#.#

6 6

###.##

#.####

######

######

#.####

######

8

1

5

3

21

2014 Pacific Northwest Region Programming Contest—Division 1 22

Problem K — limit 10 seconds

Towers
The Towers puzzle challenges a single player to place towers of varying heights in an n x n grid

(3 ≤ n ≤ 5). The heights of each tower can be any integer between 1 and n, inclusive, but the
placement of the n2 towers must be such that no tower of the same height appears twice within the
same row or column. Given no other constraints, there is an exponentially large number of ways
to place towers. Take, for example, the 5 x 5 puzzle, where one of the solutions looks like this:

The puzzles become more interesting (and harder to solve) as they further constrain that one or
more grid locations be occupied by towers of specified heights. A 5 x 5 puzzle, for instance, might
require that the upper left and lower right corners house towers of height 3, and that the center
location house a tower of height 5. The puzzle would look like that on the left below, and a
solution—again, one of many—might look like that presented to its right.

Some puzzles include one or more numbers around the perimeter, where each number specifies
the exact number of towers visible when looking into the grid from that direction, with the un-
derstanding that taller towers fully conceal shorter ones. For example, the 5 x 5 puzzle presented
below and on the left would have the (incidentally unique) solution to its right.

2014 Pacific Northwest Region Programming Contest—Division 1 23

The number above the final column requires that just a single tower be visible when viewing its
sequence of five towers from above (which essentially means that the top row of that column must
house a 5.) The second row introduces multiple requirements:

• the center column must house a 3,

• exactly two towers are visible when viewing its tower sequence from the left, and

• exactly three towers are visible when viewing its two sequence from the right.

Input

The input starts with a single integer on a line by itself, giving the number of tests; there will be
at least 1 but no more than 100 test cases. Each n× n puzzle (3 ≤ n ≤ 5) is expressed as a series
of n + 2 lines of length n + 2. The outer perimeter of the grid specifies the visibility constraints
(where ‘-’ expresses there are no constraints for that row or column from the relevant direction
looking in; the corners of the perimeter are always ‘-’] and the interior of the grid specifies those
locations where a tower of a specific height must be placed (where ‘-’ expresses there is no imposed
tower height for that location.)

We guarantee that every character in the grid is either a ‘-’ or a digit between 1 and n.

Output

For each input puzzle, output a solution as a sequence of n lines, each of length n, followed by a
blank line. If a puzzle has multiple solutions, then output any one of them. If a puzzle cannot be
solved, simply print the word “no”, all by itself, without the delimiting double quotes, followed by
a blank line.

2014 Pacific Northwest Region Programming Contest—Division 1 24

Sample Input Sample Output

5

5

5

-41223-

2-----3

3-----2

2-----1

1-----5

3-----2

-23212-

3

-111-

----3

2---2

----2

-131-

5

--33---

------3

------3

3------

--324--

5

-----1-

2--3--3

2-----2

-1-----

----1-2

12345

21453

34512

45231

53124

15243

23514

42135

54321

31452

no

51243

24351

45132

13524

32415

31425

25341

42153

14532

53214

2014 Pacific Northwest Region Programming Contest—Division 1 25

2014 Pacific Northwest Region Programming Contest—Division 1 26

Problem L — limit 5 seconds

Wormhole

With our time on Earth coming to an end, Cooper and Amelia have volunteered to under-
take what could be the most important mission in human history: travelling beyond this galaxy
to discover whether mankind has a future among the stars. Fortunately, astronomers have iden-
tified several potentially inhabitable planets and have also discovered that some of these planets
have wormholes joining them, which effectively makes the travel distance between these wormhole
connected planets zero. For all other planets, the travel distance between them is simply the Eu-
clidean distance between the planets. Given the location of Earth, planets, and wormholes, find
the shortest travel distance between any pairs of planets.

Input

• The first line of input is a single integer, T (1 ≤ T ≤ 10) the number of test cases.

• Each test case consists of planets, wormholes, and a set of distance queries.

• The planets list for a test case starts with a single integer, p (1 ≤ p ≤ 60), the number of
planets. Following this are p lines, where each line contains a planet name along with the
planet’s integer coordinates, i.e. name x y z (0 ≤ x, y, x ≤ 2 · 106) The names of the planets
will consist only of ASCII letters and numbers, and will always start with an ASCII letter.
Planet names are case-sensitive (Earth and earth are distinct planets). The length of a planet
name will never be greater than 50 characters. All coordinates are given in parsecs.

• The wormholes list for a test case starts with a single integer, w (0 ≤ w ≤ 40), the number
of wormholes, followed by the list of w wormholes. Each wormhole consists of two planet
names separated by a space. The first planet name marks the entrance of wormhole, and the
second planet name marks the exit from the wormhole. The planets that mark wormholes
will be chosen from the list of planets given in the preceding section. Note: you can’t enter
a wormhole at its exit.

• The queries list for a test case starts with a single integer, q (1 ≤ q ≤ 20), the number of
queries. Each query consists of two planet names separated by a space. Both planets will
have been listed in the planet list.

2014 Pacific Northwest Region Programming Contest—Division 1 27

Output

For each test case, output a line, “Case i:”, the number of the ith test case. Then, for each
query in that test case, output a line that states “The distance from planet1 to planet2 is d
parsecs.”, where the planets are the names from the query and d is the shortest possible travel
distance between the two planets. Round d to the nearest integer.

Sample Input Sample Output

3

4

Earth 0 0 0

Proxima 5 0 0

Barnards 5 5 0

Sirius 0 5 0

2

Earth Barnards

Barnards Sirius

6

Earth Proxima

Earth Barnards

Earth Sirius

Proxima Earth

Barnards Earth

Sirius Earth

3

z1 0 0 0

z2 10 10 10

z3 10 0 0

1

z1 z2

3

z2 z1

z1 z2

z1 z3

2

Mars 12345 98765 87654

Jupiter 45678 65432 11111

0

1

Mars Jupiter

Case 1:

The distance from Earth to Proxima is 5 parsecs.

The distance from Earth to Barnards is 0 parsecs.

The distance from Earth to Sirius is 0 parsecs.

The distance from Proxima to Earth is 5 parsecs.

The distance from Barnards to Earth is 5 parsecs.

The distance from Sirius to Earth is 5 parsecs.

Case 2:

The distance from z2 to z1 is 17 parsecs.

The distance from z1 to z2 is 0 parsecs.

The distance from z1 to z3 is 10 parsecs.

Case 3:

The distance from Mars to Jupiter is 89894 parsecs.

2014 Pacific Northwest Region Programming Contest—Division 1 28

