
Pacific Northwest Region

Programming Contest

Division 2

November 15th, 2014

Reminders

• For all problems, read the input data from standard input and write the results to standard
output.

• In general, when there is more than one integer or word on an input line, they will be separated
from each other by exactly one space. No input lines will have leading or trailing spaces, and
tabs will never appear in any input.

• Platform is as follows:

Ubuntu 14.04.1 LTS x86_64

geany

java version 1.7.0_65

c/c++ gcc version 4.8.2

eclipse 4.4 with CDT 8.4

Python 2.7.6 (IDE support)

Python 3.4.0 (syntax highlighting editor support)

• Compiler options are as follows:

g++ -g -O2 -std=gnu++0x -static $*

gcc -g -O2 -std=gnu99 -static $* -lm

javac -encoding UTF-8 -sourcepath . -d . $* runjava

java -client -Xss8m -Xmx1024m $*

python $*

• Python may not have sufficient performance for many of the problems; use it at your discre-
tion.

2014 Pacific Northwest Region Programming Contest—Division 2 2

Problem M — limit 5 seconds

Polyhedra

Given a sphere, you can slice through the surface of the sphere to make different convex polyhedra.
All of these convex polyhedra have the Euler characteristic which can be defined as follows:

x = V − E + F = 2

where V represents the number of vertices, E the number of edges and F the number of faces on
a convex polyhedron.

Input

Input begins with a line with a single integer T , 1 ≤ T ≤ 100, denoting the number of test cases.
Each test case consists of a single line with two space-separated integers V and E (4 ≤ V,E ≤ 100),
representing the number of vertices and edges respectively of the convex polyhedron.

Output

For each test case, print on a single line the number of faces in the defined polyhedron.

Sample Input Sample Output

2

8 12

4 6

6

4

2014 Pacific Northwest Region Programming Contest—Division 2 3

2014 Pacific Northwest Region Programming Contest—Division 2 4

Problem N — limit 5 seconds

Majority

The votes are in! Mathematicians world-wide have been polled, and each has chosen their
favorite number between 1 and 1000. Your goal is to tally the votes and determine what the most
popular number is.

If there is a tie for the greatest number of votes, choose the smallest number with that many
votes.

Input

Input will start with a single line containing the number of test cases, between 1 and 100 inclusive.
For each test case, there will be a single line giving the number of votes V , 1 ≤ V ≤ 1000. Following
that line will be V lines, each with a single integer vote between 1 and 1000.

Output

Sample Input Sample Output

3

3

42

42

19

4

7

99

99

7

5

11

12

13

14

15

42

7

11

2014 Pacific Northwest Region Programming Contest—Division 2 5

2014 Pacific Northwest Region Programming Contest—Division 2 6

Problem O — limit 5 seconds

Diamonds

A diamond’s overall worth is determined by its mass in carats as well as its overall clarity. A
large diamond with many imperfections is not worth as much as a smaller, flawless diamond. The
overall clarity of a diamond can be described on a scale from 0.0–10.0 adopted by the American
Gem Society, where 0.0 represents a flawless diamond and 10.0 represents an imperfect diamond.

Given a sequence of N diamonds, each with weight, wi, in carats and clarity, ci, on the scale
described above, find the longest subsequence of diamonds for which the weight and clarity are
both becoming strictly more favorable to a buyer.

Example

In the following sequence of diamonds,

wi ci

1.5 9.0

2.0 2.0

2.5 6.0

3.0 5.0

4.0 2.0

10.0 5.5

the longest desirable subsequence is

1.5 9.0

2.5 6.0

3.0 5.0

4.0 2.0

because the weights strictly increase while the clarities strictly decrease.

Input

Input begins with a line with a single integer T , 1 ≤ T ≤ 100, indicating the number of test cases.
Each test case begins with a line with a single integer N , 1 ≤ N ≤ 200, indicating the number of
diamonds. Next follow N lines with 2 real numbers wi and ci, 0.0 ≤ wi, ci ≤ 10.0, indicating the
weight in carats and the clarity of diamond i, respectively.

2014 Pacific Northwest Region Programming Contest—Division 2 7

Output

For each test case, output a single line with the length of the longest desirable subsequence of
diamonds.

Sample Input Sample Output

3

2

1.0 1.0

1.5 0.0

3

1.0 1.0

1.0 1.0

1.0 1.0

6

1.5 9.0

2.0 2.0

2.5 6.0

3.0 5.0

4.0 2.0

10.0 5.5

2

1

4

2014 Pacific Northwest Region Programming Contest—Division 2 8

Problem P — limit 5 seconds

Gold Leaf

Gold leaf is a very thin layer of gold with a paper backing. If the paper gets folded and then
unfolded, the gold leaf will stick to itself more readily than it will stick to the paper, so there will
be patches of gold and patches of exposed paper. Note that the gold leaf will always stick to itself,
rather than the paper. In the following example, the paper was folded along the dashed line. Notice
how the gold leaf always sticks to one side or the other, never both.

Consider a crude digital image of a sheet of gold leaf. If the area covered by a pixel is mostly
gold, that will be represented by a ‘#’. If it’s mostly exposed paper, it will be represented by a
‘.’. Determine where the sheet was folded. The sheet was folded exactly once, along a horizontal,
vertical, or 45 degree diagonal line. If the fold is horizontal or vertical, it is always between
rows/columns. If the fold is diagonal, then the fold goes through a diagonal line of cells, and the
cells along the fold are always ‘#’.

Input

Input will start with a single line containing the number of cases, between 1 and 100, inclusive.
Each test case will begin with a line with two integers, N and M 2 ≤ N,M ≤ 25, where N is the
number of rows, and M is the number of columns of the photograph. Each of the next N lines
will contain exactly M characters, all of which will be either ‘#’ or ‘.’. This represents a crudely
represented digital image of the sheet of gold leaf. There is guaranteed to be at least one ‘.’, and
there is guaranteed to be a solution.

Output

For each test case, output four integers, indicating the places where the fold hits the edges of the
paper. Output them in the order r1 c1 r2 c2 where (r1,c1) and (r2,c2) are row/column coordinates
(r=row, c=column). The top left character is (1,1) and the bottom right is (n,m). If the fold is
horizontal or diagonal, list the left side coordinates before the right. If the fold is vertical, list the
top coordinates before the bottom. If the fold is horizontal, use the coordinates above the fold.
If the fold is vertical, use the coordinates to the left of the fold. If the fold is diagonal, use the

2014 Pacific Northwest Region Programming Contest—Division 2 9

coordinates of the cells that the fold goes through. If more than one fold is possible, choose the one
with the smallest first coordinate, then the smallest second coordinate, then third, then fourth.

Sample Input Sample Output

3

8 10

#.#..##..#

####..####

###.##....

...#..####

....##....

.#.##..##.

##########

##########

5 20

###########.#.#.#.#.

###########...#.###.

##########..##.#..##

###########..#.#.##.

###########.###...#.

5 5

.####

###.#

##..#

#..##

#####

3 1 3 10

1 15 5 15

4 1 1 4

2014 Pacific Northwest Region Programming Contest—Division 2 10

Problem Q — limit 5 seconds

Number Game

Alice and Bob are playing a game on a line of N squares. The line is initially populated with
one of each of the numbers from 1 to N . Alice and Bob take turns removing a single number from
the line, subject to the restriction that a number may only be removed if it is not bordered by a
higher number on either side. When the number is removed, the square that contained it is now
empty. The winner is the player who removes the 1 from the line. Given an initial configuration,
who will win, assuming Alice goes first and both of them play optimally?

Input

Input begins with a line with a single integer T , 1 ≤ T ≤ 100, denoting the number of test cases.
Each test case begins with a line with a single integer N , 1 ≤ N ≤ 100, denoting the size of the
line. Next is a line with the numbers from 1 to N , space separated, giving the numbers in line
order from left to right.

Output

For each test case, print the name of the winning player on a single line.

Sample Input Sample Output

4

4

2 1 3 4

4

1 3 2 4

3

1 3 2

6

2 5 1 6 4 3

Bob

Alice

Bob

Alice

2014 Pacific Northwest Region Programming Contest—Division 2 11

2014 Pacific Northwest Region Programming Contest—Division 2 12

Problem R — limit 5 seconds

Ramp Number
A Ramp Number is a number whose digits only rise or stay the same; they never fall.

• 123 is a ramp number.

• 101 is not a ramp number.

• 1111000001111 is not a ramp number.

Given a positive integer n, if it is a ramp number, print the number of ramp numbers less than it.
If it is not a ramp number, print -1.

Input

Input will start with a single line giving the number of test cases. Each test case will be a single
positive integer on a single line, with up to 80 digits. The result will always fit into a 64-bit long.

Output

For each test case, print -1 if the input is not a ramp number. Print the number of ramp numbers
less than the input value if the input value is a ramp number.

Sample Input Sample Output

5

11

123

101

1111

99999

10

65

-1

220

2001

2014 Pacific Northwest Region Programming Contest—Division 2 13

2014 Pacific Northwest Region Programming Contest—Division 2 14

Problem S — limit 60 seconds

Ranked Choice
Ranked choice voting—also known as instant runoff voting—is used in San Francisco and Oak-

land for mayoral elections. Rather than voting for a single candidate, those casting ballots vote for
up to three candidates, ranking them 1, 2, and 3.

The first five of what might be tens or even hundreds of thousands of ballots in a real election
might look like this:

Initially, only first place votes matter, and if a single candidate gets the clear majority of all first
place votes, then that candidate wins. Rarely would anyone get a majority of all first place votes
(there were, for instance, 16 official candidates in San Francisco’s mayoral election on November
8th, 2011, and Ed Lee, who eventually won, only got 31% of the first choice votes.) In that case,
the candidates with the least number of first place votes are eliminated by effectively removing
them from all ballots everywhere and promoting all second and third place votes to be first and
second place votes to close out any gaps.

If, for example, after an analysis of all ballots, it’s determined that Phil Ting received the
smallest number of first place votes, the ballots would be updated to look like this:

The first two ballots were left alone, but the next three were updated to reflect Phil Ting’s
elimination. The one ballot including a standalone vote for Phil Ting was removed, since it no
longer contains any valid votes. The two other impacted ballots shown each show candidates
Dennis Herrera and Ed Lee advance from third to second and second to first, respectively.

The process is repeated over and over again until it leaves one candidate with a majority of first
choice votes. (On November 8th, 2011, this process was applied 12 times before Ed Lee prevailed
with 61% of all remaining rank-one votes and was declared the winner of the San Francisco mayoral
race.) If the final round sees a two-way tie between the two remaining candidates [or a three-way
tie between the three remaining candidates, and so forth], then no winner is declared.

Input Format

The first line contains an integer between 1 and 100, inclusive, giving the number of test cases.
Each test case leads with a single integer between 1 and 100000, which specifies how many ballots
need to be processed. Each ballot is expressed as a string of capital letters, where each letter

2014 Pacific Northwest Region Programming Contest—Division 2 15

represents a single candidate. Ballot string can be of length 1, 2, 3 to denote up to three votes, and
you can assume no ballot ever contains more than one vote for any particular candidate. The first
character of the string reflects the voter’s first choice. The second character, if present, represents
the voter’s second choice. The third character, if present, represents the voter’s third choice.

Output Format

For each input scenario, publish a single line summarizing exactly how candidates were eliminated.
If a winner can be declared immediately (i.e. a candidate has a clear majority without eliminating
anyone), then simply print the capital letter for that candidate on its own line, as with:

A

If one or more elimination rounds are needed, then a summary of the elimination process should
look like this:

EF -> D -> C -> B

The above line reflects the fact that three elimination rounds were needed to arrive at a winner.
The above line conveys the understanding that candidates E and F were eliminated during the first
round, candidate D was eliminated during a second round, and candidate C was eliminated during
a third round before B was declared the winner. When multiple candidates are eliminated in the
same round, they must be listed in alphabetic order. [There is exactly one space between visible
characters, and there are no trailing spaces at the end of any line.]

It’s possible a series of elimination rounds leaves the election in a stalemate, because all remain-
ing candidates have an equal number of first-choice votes. In that case, all remaining candidates
incidentally tie for the least number of first-choice votes and are collectively eliminated, leaving no
candidates and no clear winner. In that case, the summary would look as follows:

DE -> A -> BCF -> no winner

The above conveys that two elimination rounds led to a three-way tie between candidates B,
C, and F, all of whom were eliminated in a third round that left all ballots empty.

2014 Pacific Northwest Region Programming Contest—Division 2 16

Sample Input Sample Output

7

1

E

1

ABC

8

AB

AF

AC

AG

AH

AD

AE

AI

6

AB

AB

AB

CB

CB

CB

3

AC

BC

C

8

ACE

CBA

DBA

B

ABD

ABD

BAE

CEF

5

BAC

A

CAB

C

BDE

E

A

A

B -> AC -> no winner

ABC -> no winner

EF -> D -> C -> B

DE -> A -> BC -> no winner

2014 Pacific Northwest Region Programming Contest—Division 2 17

2014 Pacific Northwest Region Programming Contest—Division 2 18

Problem T — limit 5 seconds

Runes

You are helping an archaeologist decipher some runes. He knows that this ancient society used a
Base 10 system, and that they never start a number with a leading zero. He’s figured out most of
the digits as well as a few operators, but he needs your help to figure out the rest.

The professor will give you a simple math expression. He has converted all of the runes he knows
into digits. The only operators he knows are addition (+), subtraction (-), and multiplication (*),
so those are the only ones that will appear. Each number will be in the range from −999, 999 to
999, 999, and will consist of only the digits ‘0’–‘9’, possibly a leading ‘-’, and a few ‘?’s. The ‘?’s
represent a digit rune that the professor doesn’t know (never an operator, an ‘=’, or a leading ‘-’).
All of the ‘?’s in an expression will represent the same digit (0–9), and it won’t be one of the other
given digits in the expression.

Given an expression, figure out the value of the rune represented by the question mark. If
more than one digit works, give the lowest one. If no digit works, well, that’s bad news for the
professor—it means that he’s got some of his runes wrong. Output −1 in that case.

Input

The sample data will start with the number of test cases T (1 ≤ T ≤ 100). Each test case will
consist of a single line, of the form:

[number][op][number]=[number]

Each [number] will consist of only the digits ‘0’-‘9’, with possibly a single leading minus ‘-’, and
possibly some ‘?’s. No number will begin with a leading ‘0’ unless it is 0, no number will begin
with -0, and no number will have more than 6 characters (digits or ?s). The [op] will separate the
first and second [number]s, and will be one of: +, - or *. The = will always be present between the
second and third [number]s. There will be no spaces, tabs, or other characters. There is guaranteed
to be at least one ? in every equation.

Output

Output the lowest digit that will make the equation work when substituted for the ?s, or output
−1 if no digit will work. Output no extra spaces or blank lines.

Sample Input Sample Output

5

1+1=?

123*45?=5?088

-5?*-1=5?

19--45=5?

??*??=302?

2

6

0

-1

5

2014 Pacific Northwest Region Programming Contest—Division 2 19

2014 Pacific Northwest Region Programming Contest—Division 2 20

Problem U — limit 10 seconds

Top 25

In college football, many different sources create a list of the Top 25 teams in the country. Since
it’s subjective, these lists often differ, but they’re usually very similar. Your job is to compare two
of these lists, and determine where they are similar. In particular, you are to partition them into
sets, where each set represents the same consecutive range of positions in both lists, and has the
same teams, and is as small as possible. If the lists agree completely, you’ll have 25 lists (or n,
where n is an input). For these lists:

K&R Poll Lovelace Ranking

A A

B C

C D

D B

E E

You’ll have 3 sets:

A

B C D

E

Input

The input will start with a single integer on one line giving the number of test cases. There will
be at least one but not more than 100 test cases. Each test case will begin with an integer N ,
1 ≤ N ≤ 1,000,000, indicating the number of teams ranked. The next N lines will hold the first
list, in order. The team names will appear one per line, consist of at most 8 capital letters only.
After this will be N lines, in the same format, indicating the second list. Both lists will contain
the same team names, and all N team names will be unique.

Output

For each test case, simply output the size of each set, in order, on one line, with the numbers
separated by a single space. Do not output any extra spaces, and do not output blank lines
between numbers.

2014 Pacific Northwest Region Programming Contest—Division 2 21

Sample Input Sample Output

3

5

A

B

C

D

E

A

C

D

B

E

3

RED

BLUE

ORANGE

RED

BLUE

ORANGE

3

MOE

LARRY

CURLY

CURLY

MOE

LARRY

1 3 1

1 1 1

3

2014 Pacific Northwest Region Programming Contest—Division 2 22

Problem V — limit 5 seconds

Towers
The Towers puzzle challenges a single player to place towers of varying heights in an n x n grid

(3 ≤ n ≤ 5). The heights of each tower can be any integer between 1 and n, inclusive, but the
placement of the n2 towers must be such that no tower of the same height appears twice within the
same row or column. Given no other constraints, there is an exponentially large number of ways
to place towers. Take, for example, the 5 x 5 puzzle, where one of the solutions looks like this:

The puzzles become more interesting (and harder to solve) as they further constrain that one or
more grid locations be occupied by towers of specified heights. A 5 x 5 puzzle, for instance, might
require that the upper left and lower right corners house towers of height 3, and that the center
location house a tower of height 5. The puzzle would look like that on the left below, and a
solution—again, one of many—might look like that presented to its right.

Some puzzles include one or more numbers around the perimeter, where each number specifies
the exact number of towers visible when looking into the grid from that direction, with the un-
derstanding that taller towers fully conceal shorter ones. For example, the 5 x 5 puzzle presented
below and on the left would have the (incidentally unique) solution to its right.

2014 Pacific Northwest Region Programming Contest—Division 2 23

The number above the final column requires that just a single tower be visible when viewing its
sequence of five towers from above (which essentially means that the top row of that column must
house a 5.) The second row introduces multiple requirements:

• the center column must house a 3,

• exactly two towers are visible when viewing its tower sequence from the left, and

• exactly three towers are visible when viewing its two sequence from the right.

Input

The input starts with a single integer on a line by itself, giving the number of tests; there will be
at least 1 but no more than 100 test cases. Each n× n puzzle (3 ≤ n ≤ 5) is expressed as a series
of n + 2 lines of length n + 2. The outer perimeter of the grid specifies the visibility constraints
(where ‘-’ expresses there are no constraints for that row or column from the relevant direction
looking in; the corners of the perimeter are always ‘-’] and the interior of the grid specifies those
locations where a tower of a specific height must be placed (where ‘-’ expresses there is no imposed
tower height for that location.)

We guarantee that every character in the grid is either a ‘-’ or a digit between 1 and n.

Output

For each input puzzle, output a solution as a sequence of n lines, each of length n, followed by a
blank line. If a puzzle has multiple solutions, then output any one of them. If a puzzle cannot be
solved, simply print the word “no”, all by itself, without the delimiting double quotes, followed by
a blank line.

2014 Pacific Northwest Region Programming Contest—Division 2 24

Sample Input Sample Output

5

5

5

-41223-

2-----3

3-----2

2-----1

1-----5

3-----2

-23212-

3

-111-

----3

2---2

----2

-131-

5

--33---

------3

------3

3------

--324--

5

-----1-

2--3--3

2-----2

-1-----

----1-2

12345

21453

34512

45231

53124

15243

23514

42135

54321

31452

no

51243

24351

45132

13524

32415

31425

25341

42153

14532

53214

2014 Pacific Northwest Region Programming Contest—Division 2 25

2014 Pacific Northwest Region Programming Contest—Division 2 26

Problem W — limit 5 seconds

Wormhole

With our time on Earth coming to an end, Cooper and Amelia have volunteered to under-
take what could be the most important mission in human history: travelling beyond this galaxy
to discover whether mankind has a future among the stars. Fortunately, astronomers have iden-
tified several potentially inhabitable planets and have also discovered that some of these planets
have wormholes joining them, which effectively makes the travel distance between these wormhole
connected planets zero. For all other planets, the travel distance between them is simply the Eu-
clidean distance between the planets. Given the location of Earth, planets, and wormholes, find
the shortest travel distance between any pairs of planets.

Input

• The first line of input is a single integer, T (1 ≤ T ≤ 10) the number of test cases.

• Each test case consists of planets, wormholes, and a set of distance queries.

• The planets list for a test case starts with a single integer, p (1 ≤ p ≤ 60), the number of
planets. Following this are p lines, where each line contains a planet name along with the
planet’s integer coordinates, i.e. name x y z (0 ≤ x, y, x ≤ 2 · 106) The names of the planets
will consist only of ASCII letters and numbers, and will always start with an ASCII letter.
Planet names are case-sensitive (Earth and earth are distinct planets). The length of a planet
name will never be greater than 50 characters. All coordinates are given in parsecs.

• The wormholes list for a test case starts with a single integer, w (0 ≤ w ≤ 40), the number
of wormholes, followed by the list of w wormholes. Each wormhole consists of two planet
names separated by a space. The first planet name marks the entrance of wormhole, and the
second planet name marks the exit from the wormhole. The planets that mark wormholes
will be chosen from the list of planets given in the preceding section. Note: you can’t enter
a wormhole at its exit.

• The queries list for a test case starts with a single integer, q (1 ≤ q ≤ 20), the number of
queries. Each query consists of two planet names separated by a space. Both planets will
have been listed in the planet list.

2014 Pacific Northwest Region Programming Contest—Division 2 27

Output

For each test case, output a line, “Case i:”, the number of the ith test case. Then, for each
query in that test case, output a line that states “The distance from planet1 to planet2 is d
parsecs.”, where the planets are the names from the query and d is the shortest possible travel
distance between the two planets. Round d to the nearest integer.

Sample Input Sample Output

3

4

Earth 0 0 0

Proxima 5 0 0

Barnards 5 5 0

Sirius 0 5 0

2

Earth Barnards

Barnards Sirius

6

Earth Proxima

Earth Barnards

Earth Sirius

Proxima Earth

Barnards Earth

Sirius Earth

3

z1 0 0 0

z2 10 10 10

z3 10 0 0

1

z1 z2

3

z2 z1

z1 z2

z1 z3

2

Mars 12345 98765 87654

Jupiter 45678 65432 11111

0

1

Mars Jupiter

Case 1:

The distance from Earth to Proxima is 5 parsecs.

The distance from Earth to Barnards is 0 parsecs.

The distance from Earth to Sirius is 0 parsecs.

The distance from Proxima to Earth is 5 parsecs.

The distance from Barnards to Earth is 5 parsecs.

The distance from Sirius to Earth is 5 parsecs.

Case 2:

The distance from z2 to z1 is 17 parsecs.

The distance from z1 to z2 is 0 parsecs.

The distance from z1 to z3 is 10 parsecs.

Case 3:

The distance from Mars to Jupiter is 89894 parsecs.

2014 Pacific Northwest Region Programming Contest—Division 2 28

Problem X — limit 5 seconds

Wrench

Peter works at a factory. He is looking at a list of wrench sizes and needs to find the appropriately
sized wrench for various screws and nuts and bolts to do his work. Normally, these sizes are specified
using US Customary Unit notation such as 13/16”, or 3/8”, and so on.

Another way to write 13/16” is 0.8125”

But the reference sheets for various parts round the numbers in weird ways, and give approxima-
tions only, so for example 13/16” might turn into 0.812, or 0.813, or sometimes just 0.81, depending
on the method of rounding.

Given that Peter is looking for a wrench of size A/B”, and it is customary for B to be a power
of 2, help Peter find the correct wrench size, where A is a positive integer and B is the minimum
possible base (power of 2).

Input

Input starts with the number of test cases, T , on a single line, with 1 ≤ T ≤ 100. Each test case
is a single decimal number on its own line representing a wrench size, with at most six digits after
the decimal point. There need not always be a decimal point. The input value will be greater than
zero.

Output

A/B”, or C A/B”, or C”, where B is the minimal power of two such that the exact decimal
representation rounded to the number of decimal digits of the input matches the input, using one
of the following rounding rules: round up (ceiling), round down (or truncate), or round-to-nearest.
The wrench will be less than or equal to 10 inches. There will always be a valid power of two less
than or equal to 128.

2014 Pacific Northwest Region Programming Contest—Division 2 29

Sample Input Sample Output

10

0.81

.8125

0.37

2

2.4

2.99

2.40

1.27

4.

9.242187

13/16"

13/16"

3/8"

2"

2 3/8"

2 63/64"

2 13/32"

1 17/64"

4"

9 31/128"

2014 Pacific Northwest Region Programming Contest—Division 2 30

