
Pacific Northwest Region

Programming Contest

Division 1

November 14th, 2015



Reminders

• For all problems, read the input data from standard input and write the results to standard
output.

• In general, when there is more than one integer or word on an input line, they will be separated
from each other by exactly one space. No input lines will have leading or trailing spaces, and
tabs will never appear in any input.

• Platform is as follows:

Ubuntu 14.04.1 LTS x86_64

geany

java version 1.7.0_65

c/c++ gcc version 4.8.2

eclipse 4.4 with CDT 8.4

Python 2.7.6 (IDE support)

Python 3.4.0 (syntax highlighting editor support)

• Compiler options are as follows:

g++ -g -O2 -std=gnu++11 -static $*

gcc -g -O2 -std=gnu99 -static $* -lm

javac -encoding UTF-8 -sourcepath . -d . $* runjava

java -client -Xss8m -Xmx1024m $*

python $*

mcs $*

mono $*

• Python may not have sufficient performance for many of the problems; use it at your discre-
tion.

2015 Pacific Northwest Region Programming Contest—Division 1 2



Problem A — limit 5 seconds

Airports

An airline company offers flights out of n airports, conveniently labeled from 1 to n. The flight
time tij from airport i to airport j is known for every i and j. It may be the case that tij 6= tji,
due to things like wind or geography. Upon landing at a given airport, a plane must be inspected
before it can be flown again. This inspection time pi is dependent only on the airport at which the
inspection is taking place and not where the previous flight may have originated.

Given a set of m flights that the airline company must provide, determine the minimum number
of planes that the company needs to purchase. The airline may add unscheduled flights to move
the airplanes around if that would reduce the total number of planes needed.

Input

The first line of input contains two space-separated integers n and m (1 ≤ n,m ≤ 500). The next
line contains n space-separated integers p1, . . . , pn (0 ≤ pi ≤ 106).

Each of the next n lines contains n space-separated integers. The jth integer in line i + 2 is tij
(0 ≤ tij ≤ 106). It is guaranteed that tii = 0 for all i. However, it may be the case that tij 6= tji
when i 6= j.

Each of the next m lines contains three space-separated integers, si, fi, and ti (1 ≤ si, fi ≤ n,
si 6= fi, 1 ≤ ti ≤ 106), indicating that the airline company must provide a flight that flies out from
airport si at exactly time ti, heading directly to airport fi.

Output

Print, on a single line, a single integer indicating the minimum number of planes the airline company
must purchase in order to provide the m requested flights.

Sample Input Sample Output

2 2

1 1

0 1

1 0

1 2 1

2 1 1

2

2015 Pacific Northwest Region Programming Contest—Division 1 3



Sample Input Sample Output

2 2

1 1

0 1

1 0

1 2 1

2 1 3

1

Sample Input Sample Output

5 5

72 54 71 94 23

0 443 912 226 714

18 0 776 347 810

707 60 0 48 923

933 373 881 0 329

39 511 151 364 0

4 2 174

2 1 583

4 3 151

1 4 841

4 3 993

3

2015 Pacific Northwest Region Programming Contest—Division 1 4



Problem B — limit 10 seconds

Butterfly Effect

There are several events that are about to happen. Each event has either a positive outcome or a
negative outcome, and these outcomes affect the probabilities of the outcomes of subsequent events.

The events occur in the order given in the input. For every event i, there is an associated
integer-valued base value, which we denote by bi. To decide the outcome of an event, we roll a fair
m-sided die with sides marked 1 through m and add the amount shown on the die to the base value.
If the result is strictly positive, then the outcome is positive; otherwise (including if the result is
zero), the negative outcome occurs. If the positive outcome occurs, then we modify the base values
of all subsequent events according to a list of modifiers associated with the event. That is, if the
outcome of event i is positive, the new base value for event j is bj + pij , where pij is the modifier
to event j in the case of a positive outcome for event i. If the negative outcome occurs, we do the
same but with a different list of modifiers; the base value for event j becomes bj + qij , where qij is
the associated modifier.

You have the power to intervene in a certain number of events. When you intervene, instead
of rolling one die, you roll two dice and then choose the die you prefer. For each event, you
decide whether or not to intervene immediately before that event’s die is rolled, i.e., you may use
the outcomes of previous events to decide whether or not to intervene. Can you maximize the
probability of the final event having a positive outcome?

Input

The first line contains three space-separated integers n, k, and m (1 ≤ k ≤ n ≤ 20, 4 ≤ m ≤ 1,000),
denoting the number of events, the maximum number of interventions, and the die size, respectively.
Next are 3n lines describing the base values and modifiers of the events, in the following format:

• Line 3i− 1: One integer bi denoting the base value of event i. The base value of each event
will have absolute value at most 2,000.

• Line 3i: n− i space-separated integers pi,i+1, . . . , pin denoting the modifiers to the base values
of events i + 1 through n in the case of a positive outcome for event i. Each modifier will
have absolute value at most 2,000.

• Line 3i + 1: n − i space-separated integers qi,i+1, . . . , qin denoting the modifiers to the base
values of events i + 1 through n in the case of a negative outcome for event i. Each modifier
will have absolute value at most 2,000.

The final event has no modifiers, and thus the last two lines of the input are empty.

2015 Pacific Northwest Region Programming Contest—Division 1 5



Output

Print, on a single line, a single number equal to the maximum probability of the final event having
a positive outcome, rounded and displayed to exactly 6 decimal places.

Sample Input Sample Output

2 2 6

-3

-100

100

0

0.750000

Sample Input Sample Output

4 1 10

-5

-10 9 0

9 -10 0

-10

0 10

0 0

-10

10

0

-10

0.990000

2015 Pacific Northwest Region Programming Contest—Division 1 6



Problem C — limit 2 seconds

Classy

In his memoir So, Anyway. . . , comedian John Cleese writes of the class difference between his father
(who was “middle-middle-middle-lower-middle class”) and his mother (who was “upper-upper-
lower-middle class”). These fine distinctions between classes tend to confuse American readers, so
you are to write a program to sort a group of people by their classes to show the true distinctions.

There are three main classes: upper, middle, and lower. Obviously, upper class is the highest,
and lower class is the lowest. But there can be distinctions within a class, so upper-upper is a
higher class than middle-upper, which is higher than lower-upper. However, all of the upper classes
(upper-upper, middle-upper, and lower-upper) are higher than any of the middle classes.

Within a class like middle-upper, there can be further distinctions as well, leading to classes
like lower-middle-upper-middle-upper. When comparing classes, once you’ve reached the lowest
level of detail, you should assume that all further classes are the equivalent to the middle level of
the previous level of detail. So upper class and middle-upper class are equivalent, as are middle-
middle-lower-middle and lower-middle.

Input

The first line of input contains n (1 ≤ n ≤ 1,000), the number of names to follow. Each of the
following n lines contains the name of a person (a sequence of 1 or more lowercase letters ‘z’–‘z’),
a colon, a space, and then the class of the person. The class of the person will include one or more
modifiers and then the word class. The colon, modifiers, and the word class will be separated
from each other by single spaces. All modifiers are one of upper, middle, or lower. It is guaranteed
that the input is well-formed. Additionally, no two people have the same name. Input lines are no
longer than 256 characters.

Output

Print the n names, each on a single line, from highest to lowest class. If two people have equivalent
classes, they should be listed in alphabetical order by name.

2015 Pacific Northwest Region Programming Contest—Division 1 7



Sample Input Sample Output

5

mom: upper upper lower middle class

dad: middle middle lower middle class

queenelizabeth: upper upper class

chair: lower lower class

unclebob: middle lower middle class

queenelizabeth

mom

dad

unclebob

chair

Sample Input Sample Output

10

rich: lower upper class

mona: upper upper class

dave: middle lower class

charles: middle class

tom: middle class

william: lower middle class

carl: lower class

violet: middle class

frank: lower class

mary: upper class

mona

mary

rich

charles

tom

violet

william

carl

dave

frank

2015 Pacific Northwest Region Programming Contest—Division 1 8



Problem D — limit 2 seconds

Triangle

Determine if it is possible to produce two triangles of given side lengths, by cutting some rectangle
with a single line segment, and freely rotating and flipping the resulting pieces.

Input

The input consists of two lines. The first line contains three space-separated positive integers,
indicating the desired side lengths of the first triangle. Similarly, the second line contains three
space-separated positive integers, denoting the desired side lengths of the second triangle. It is
guaranteed that the side lengths produce valid triangles. All side lengths are less than or equal to
100.

Output

Print, on a single line, whether there exists a rectangle which could have been cut to form triangles
of the given side lengths. If such a rectangle exists, print YES. Otherwise, print NO.

Sample Input Sample Output

3 4 5

4 3 5

YES

Sample Input Sample Output

3 4 6

4 6 3

NO

Sample Input Sample Output

39 52 65

25 60 65

NO

2015 Pacific Northwest Region Programming Contest—Division 1 9



2015 Pacific Northwest Region Programming Contest—Division 1 10



Problem E — limit 2 seconds

Excellence

The World Coding Federation is setting up a huge online programming tournament of teams com-
prised of pairs of programmers. Judge David is in charge of putting teams together from the
Southeastern delegation. Every student must be placed on exactly one team of two students.
Luckily, he has an even number of students who want to compete, so that he can make sure that
each student does compete. However, he’d like to maintain his pristine reputation amongst other
judges by making sure that each of the teams he fields for the competition meet some minimum
total rating. We define the total rating of a team to be the sum of the ratings of both individuals
on the team.

Help David determine the maximum value, X, such that he can form teams, each of which have
a total rating greater than or equal to X.

Input

The first line of input contains a single positive integer n (1 ≤ n ≤ 105, n is even), the number
of students who want to enter the online programming tournament. Each of the following n lines
contains one single integer si (1 ≤ si ≤ 106), the rating of student i.

Output

Print, on a single line, the maximum value, X, such that David can form teams where every team
has a total rating greater than or equal to X.

Sample Input Sample Output

4

1

2

3

5

5

2015 Pacific Northwest Region Programming Contest—Division 1 11



Sample Input Sample Output

2

18

16

34

Sample Input Sample Output

4

13

12

19

14

27

2015 Pacific Northwest Region Programming Contest—Division 1 12



Problem F — limit 4 seconds

Falling Blocks

T X R S

Z V 7 W

FallingBlocks is a Tetris-like arcade game, played on a board with 3 columns and 10 rows according
to the following rules. A known, indefinitely repeating sequence of pentominoes (simply called
pieces) fall down from the top of the board, one at a time. The 8 pieces and their labels are shown
above.

The pieces can be rotated freely (by 0, 90, 180 or 270 degrees), but they cannot flipped.
The rules are similar to that of Tetris. The newly introduced piece falls from the top of the

board as far as possible until it hits the bottom of the board or an existing block in the board.
Then, any rows that are completely full are removed and rows above are moved down, with no
further change in the rows themselves.

To illustrate this, consider an empty board, on which an R piece, followed by a Z piece, falls.
If we drop the R piece without rotating, we end up with first board shown above. Dropping a
rotated Z piece on top of it causes two rows to fill. These rows are removed, and the rows above
are pushed downward. The final situation is as shown in the rightmost picture. The final position
has a “hanging block;” this block does not fall any further at this point.

Unlike Tetris, the top three rows of the board must be completely empty in order to place a
piece, i.e., if any of the top three rows is not empty after removing all rows that are full, the game
is over.

The score is solely based on the number of pieces played on the board before the game is over.
Given the sequence of pieces that repeats indefinitely, determine the maximum number of pieces
that can be played.

Below are some example sequences of pieces, followed by explanation.

• X: Every drop of an X piece leaves two rows filled that cannot be removed by additional X
pieces. After placing four pieces, we have eight non-empty rows left, so the next X piece
cannot be placed. So the result is 4.

• XXXXR: The R piece could be rotated to not overlap the square left in the highest non-empty
row, but our rule is that the top three rows must be completely empty to place any piece. So
the result is 4.

• VZV: Two V pieces and a Z piece can be placed to clear the board, so this game can go on
forever.

2015 Pacific Northwest Region Programming Contest—Division 1 13



Input

The input consists of a single line that contains a single string, representing the sequence of pen-
tominoes. The input sequence contains between 1 and 20 characters.

Output

Print, on a single line, the maximum number of pieces that can be played until no more piece can
be placed on the board. If the game can continue indefinitely, print forever.

Sample Input Sample Output

T forever

Sample Input Sample Output

W 8

Sample Input Sample Output

VZ 25

Sample Input Sample Output

VR forever

Sample Input Sample Output

VVTRX 130

Sample Input Sample Output

XSVTVT forever

2015 Pacific Northwest Region Programming Contest—Division 1 14



Problem G — limit 2 seconds

Racing Gems

You are playing a racing game. Your character starts at the x axis (y = 0) and proceeds up the
race track, which has a boundary at the line x = 0 and another at x = w. You may start the race
at any horizontal position you want, as long as it is within the track boundary. The finish line is
at y = h, and the game ends when you reach that line. You proceed at a fixed vertical velocity v,
but you can control your horizontal velocity to be any value between −v/r and v/r, and change it
at any time.

There are n gems at specific points on the race track. Your job is to collect as many gems as
possible. How many gems can you collect?

Input

The first line of input contains four space-separated integers n, r, w, and h (1 ≤ n ≤ 105, 1 ≤ r ≤ 10,
1 ≤ w, h ≤ 109). Each of the following n lines contains two space-separated integers xi and yi,
denoting the coordinate of the ith gem (0 ≤ xi ≤ w, 0 < yi ≤ h). There will be at most one gem
per location.

The input does not include a value for v.

Output

Print, on a single line, the maximum number of gems that can be collected during the race.

Sample Input Sample Output

5 1 10 10

8 8

5 1

4 6

4 7

7 9

3

2015 Pacific Northwest Region Programming Contest—Division 1 15



Sample Input Sample Output

5 1 100 100

27 75

79 77

40 93

62 41

52 45

3

Sample Input Sample Output

10 3 30 30

14 9

2 20

3 23

15 19

13 5

17 24

6 16

21 5

14 10

3 6

4

2015 Pacific Northwest Region Programming Contest—Division 1 16



Problem H — limit 10 seconds

Hilbert Sort
In database storage, arranging data items according to a numeric key not only makes it easier to
search for a particular item, but also makes better use of a CPU’s cache: any segment of data
that’s contiguous in memory will describe items with similar keys. This is useful if, for instance,
we want to access all items whose keys are in some range. Things get more complicated if the keys
represent points on a 2D grid, as might happen in a GPS guidance system. If the points (x, y)
are sorted primarily by x, breaking ties by y, then points that are adjacent in memory will have
similar x coordinates but not necessarily similar y, potentially placing them far apart on the grid.
To better preserve distances, we may sort the data along a continuous space-filling curve.

We consider one such space-filling curve called the Hilbert curve. The Hilbert curve starts at
the origin (0, 0) and finishes at (S, 0), in the process traversing the entire axis-aligned square with
corners at (0, 0) and (S, S). It has the following recursive construction: split the square into four
quadrants meeting at (S/2, S/2), and recursively fill each of them with a suitably rotated and scaled
copy of the full Hilbert curve. First, the lower-left quadrant is filled with a curve going from (0, 0)
to (0, S/2). Second, the upper-left quadrant is filled from (0, S/2) to (S/2, S/2). Third, the upper-
right quadrant is filled from (S/2, S/2) to (S, S/2). And finally, the lower-right quadrant is filled
from (S, S/2) to (S, 0). The Hilbert curve can alternatively be constructed as the mathematical
limit of a sequence of curves, the first six of which are shown in the figure.

Given some locations of interest, you are asked to sort them according to when the Hilbert curve
visits them. Note that while the curve intersects itself at infinitely many places, e.g., at (S/2, S/2);
making S odd guarantees that all integer points are visited just once.

2015 Pacific Northwest Region Programming Contest—Division 1 17



Input

The first line of input contains two space-separated integers n and S (1 ≤ n ≤ 200,000, 1 ≤ S < 109,
S is odd). This is followed by n lines. Line i + 1 describes the ith location of interest by space-
separated integers xi and yi (0 ≤ xi, yi ≤ S) and an identifier string consisting of at most 46
alphanumeric characters (‘A’–‘Z’, ‘a’–‘z’, ‘0’–‘9’). No two locations will share the same position or
the same identifier.

Output

Print the n identifier strings, one on each line, Hilbert-sorted according to their positions.

Sample Input Sample Output

14 25

5 5 Honolulu

5 10 PugetSound

5 20 Victoria

10 5 Berkeley

10 10 Portland

10 15 Seattle

10 20 Vancouver

15 5 LasVegas

15 10 Sacramento

15 15 Kelowna

15 20 PrinceGeorge

20 5 Phoenix

20 10 SaltLakeCity

20 20 Calgary

Honolulu

Berkeley

Portland

PugetSound

Victoria

Vancouver

Seattle

Kelowna

PrinceGeorge

Calgary

SaltLakeCity

Sacramento

LasVegas

Phoenix

2015 Pacific Northwest Region Programming Contest—Division 1 18



Problem I — limit 5 seconds

Coverage

A cellular provider has installed n towers to support their network. Each tower provides coverage
in a 1 km radius, and no two towers are closer than 1 km to one another. The coverage region of
this network is therefore the set of all points that are no more than 1 km away from at least one
tower. The provider wants as much of this region as possible to be connected, in the sense that a
user at any point within a connected subregion can travel to any other point within the connected
subregion without having to exit the subregion. Their current installation of towers may or may
not already form a single connected region, but they have the resources to build one more tower
wherever they want, including within 1 km of an existing tower.

Given that the provider is able to build one more tower, what is the maximum number of towers
(including the one just built) that can be included within a single connected subregion of coverage?

Input

The first line consists of a single integer n (1 ≤ n ≤ 5,000), denoting the number of existing towers.
Next follow n lines each with 2 space-separated real numbers xi, yi (0 ≤ xi, yi ≤ 105), denoting the
location of tower i in km. It is guaranteed that the optimal number of towers will not change even
if the coverage radius of all the towers is increased or decreased by one millimeter.

Output

Print, on a single line, a single integer denoting the maximum number of towers that can be within
a single connected subregion of the network after installing one additional tower.

Sample Input Sample Output

5

1.0 1.0

3.1 1.0

1.0 3.1

3.1 3.1

4.2 3.1

6

2015 Pacific Northwest Region Programming Contest—Division 1 19



Sample Input Sample Output

5

1.0 1.0

3.1 1.0

1.0 3.1

3.1 3.1

10.0 10.0

5

2015 Pacific Northwest Region Programming Contest—Division 1 20



Problem J — limit 2 seconds

Olympics

The weightlifting event is up next at the Olympic games, and it’s time to impress your fans! To
accomplish your sequence of lift attempts, you have a constant strength S and a decreasing energy
reserve E. For each attempt, you may choose any positive (not necessarily integer) weight W . If
S ≥ W , the lift succeeds and your energy goes down by Esucc. If S < W , the lift fails and your
energy goes down by Efail. You may continue attempting lifts as long as E > 0. If at any point
E ≤ 0, you can make no further attempts. Your score is the maximum weight in kg that you
successfully lift, or 0 if all attempts failed.

Ideally, you should lift at exactly your strength limit. However, you do not know your strength.
You only know that you can definitely lift the 25 kg Olympic bar, and that the maximum conceivable
lift adds 100 kg on each side for a total of 225 kg. How close to an optimal score can you guarantee?
That is, what’s the smallest d for which you can ensure a score of at least S − d?

Input

The input consists of a single line containing three space-separated integers E, Esucc, and Efail

(1 ≤ E,Esucc, Efail ≤ 107).

Output

Print, on a single line, the minimum d, rounded and displayed to exactly 6 decimal places.

Sample Input Sample Output

1 3 3 112.500000

Sample Input Sample Output

12 3 3 13.333333

Sample Input Sample Output

3000 2 3 0.000000

2015 Pacific Northwest Region Programming Contest—Division 1 21



2015 Pacific Northwest Region Programming Contest—Division 1 22



Problem K — limit 2 seconds

Checkers
Checkers is played on a n × n checkerboard (typically n equals 8, 10, or 12, but for this problem,
n will range from 2 to 26). The board has squares colored red and black, and all pieces move
only on the black squares. The two sides are called “Black” and “White,” and their pieces are so
colored. The columns of the checkerboard are lettered starting with a on the left and increasing
alphabetically. The rows are numbered 1, . . . , n, starting from the bottom. We refer to each square
on the board by its label: the column letter followed by the row number, e.g., c6, z10, or b26. Two
sample boards are given below (with additional labels to illustrate the column numbering).

8

7

6

5

4

3

2

1

a b c d e f g h

8

7

6

5

4

3

2

1

a b c d e f g h

8

7

6

5

4

3

2

1

a b c d e f g h

8

7

6

5

4

3

2

1

a b c d e f g h

A piece may jump diagonally over a piece of the other color to capture the piece (removing it
from the board). In order to perform a jump, the piece that is jumped over must be diagonally
adjacent to the piece performing a jump, and the square on the other side of the piece jumped
over must be vacant. If such a capture is possible, the jumping piece may continue jumping and
capturing pieces of the other color until no more jumps are possible.

For example, in the left sample board, the Black piece at position b6 can capture both White
pieces in a single move by first jumping over the White piece at c5 (which moves the Black piece
to d4), and then jumping over the White piece at e5, landing at f6. In the right sample board, no
Black piece can jump any White pieces.

It is Black’s turn to move. Given a board of checkers, determine if it is possible for Black to
jump all of White’s pieces in a single move.

Input

The first line of input contains n (2 ≤ n ≤ 26), the size of the board. The following n lines of
n characters describe the board. Red squares (to which no piece can ever move) are labeled with
‘.’. Black squares with no pieces are labeled with ‘_’. Black pieces are labeled with ‘B’, and White
pieces are labeled with ‘W’.

It is guaranteed that the given board has at least one Black piece and one White piece. Addi-
tionally, the board is guaranteed to be well-formed; that is, no piece is on a red square, and the
board is correctly colored.

2015 Pacific Northwest Region Programming Contest—Division 1 23



Output

Print, on a single line, the location of the Black piece that can capture all of White’s pieces in a
single move. If there are multiple such Black pieces, print Multiple. If there is no such Black
piece, print None.

Sample Input Sample Output

8

._._._._

_._._._.

.W._.B._

_.W.W._.

.W.B._._

_._._._.

.W._.W._

_._._._.

None

Sample Input Sample Output

10

._._._._._

_.W.W._._.

._._._._._

_.W.W._._.

._._._._._

_.W.W.W.W.

._._._._._

_.W.W.W.W.

.B.B.B._._

_._._._._.

d2

2015 Pacific Northwest Region Programming Contest—Division 1 24


