
Pacific Northwest Region

Programming Contest

Division 2

November 14th, 2015



Reminders

• For all problems, read the input data from standard input and write the results to standard
output.

• In general, when there is more than one integer or word on an input line, they will be separated
from each other by exactly one space. No input lines will have leading or trailing spaces, and
tabs will never appear in any input.

• Platform is as follows:

Ubuntu 14.04.1 LTS x86_64

geany

java version 1.7.0_65

c/c++ gcc version 4.8.2

eclipse 4.4 with CDT 8.4

Python 2.7.6 (IDE support)

Python 3.4.0 (syntax highlighting editor support)

• Compiler options are as follows:

g++ -g -O2 -std=gnu++11 -static $*

gcc -g -O2 -std=gnu99 -static $* -lm

javac -encoding UTF-8 -sourcepath . -d . $* runjava

java -client -Xss8m -Xmx1024m $*

python $*

mcs $*

mono $*

• Python may not have sufficient performance for many of the problems; use it at your discre-
tion.

2015 Pacific Northwest Region Programming Contest—Division 2 2



Problem L — limit 2 seconds

Millionaire

Congratulations! You were selected to take part in the TV game show Who Wants to Be a
Millionaire! Like most people, you are somewhat risk-averse, so you might rather take $250,000
than a 50% chance of winning $1,000,000. On the other hand, if you happen to already be rich,
then you might as well take a chance on the latter. Before appearing on the show, you want to
devise a strategy to maximize the expected happiness derived from your winnings.

More precisely, if your present net worth is W dollars, then winning v dollars gives you ln(1 +
v/W ) units of happiness. Thus, the game’s expected happiness is

∑
v P (v) ln(1+v/W ), where P (v)

is the probability that you’ll win v dollars, and the summation is taken over all possible values of
v. Since happiness units are too abstract, you will be asked to measure the value of the game in
dollars. That is, compute D such that a guaranteed payout of D dollars makes you as happy as a
chance on the show, assuming optimal play.

On the show, you will be presented with a series of questions on trivia, each associated with a
prize value of vi dollars. Your analysis of past episodes reveals that if you attempt the ith question,
your chances of being correct are pi.

After answering correctly, you may choose to continue or to quit. If you quit, you win the value
of the last correctly answered question; otherwise, the game continues and you must attempt the
next question. If you correctly answer all the questions, you walk away with the value of the last
question.

If you answer a question incorrectly, however, the game ends immediately and you win the value
of the last correctly answered question that is labeled as safe, or nothing if you never solved a
safe question.

For example, the game in the first sample input is worth 0.5 ln(1 + 5000/4000) ≈ 0.405 units of
happiness. Getting $2,000 would likewise grant ln(1 + 2000/4000) ≈ 0.405 happiness.

Input

The first line of input contains two space-separated integers n and W (1 ≤ n ≤ 105, 1 ≤ W ≤ 106).
Line i + 1 describes the ith question. It starts with a string, which is one of safe or unsafe,
indicating whether the ith question is safe or not. The string is followed by a real number pi and
an integer vi (0 ≤ pi ≤ 1, 1 ≤ vi < vi+1 ≤ 106).

Output

Print, on a single line, a $ sign immediately followed by D, rounded and displayed to exactly two
decimal places. See the samples for format clarification.

2015 Pacific Northwest Region Programming Contest—Division 2 3



Sample Input Sample Output

1 4000

unsafe 0.5 5000
$2000.00

Sample Input Sample Output

4 4000

unsafe 1 2000

safe 0.4 5000

unsafe 0.75 10000

safe 0.05 1000000

$2316.82

Sample Input Sample Output

2 4000

safe 0.003 1

safe 0.03 10

$0.00

2015 Pacific Northwest Region Programming Contest—Division 2 4



Problem M — limit 2 seconds

Magic Trick

Your friend has come up with a math trick that supposedly will blow your mind. Intrigued, you
ask your friend to explain the trick.

First, you generate a random positive integer k between 1 and 100. Then, your friend will give
you n operations to execute. An operation consists of one of the four arithmetic operations ADD,
SUBTRACT, MULTIPLY, or DIVIDE, along with an integer-valued operand x. You are supposed to
perform the requested operations in order.

You don’t like dealing with fractions or negative numbers though, so if during the process, the
operations generate a fraction or a negative number, you will tell your friend that he messed up.

Now, you know the n operations your friend will give. How many of the first 100 positive
integers will cause your friend to mess up?

Input

The first line of input contains a single positive integer n (1 ≤ n ≤ 10). Each of the next n lines
consists of an operation, followed by an operand. The operation is one of the strings ADD, SUBTRACT,
MULTIPLY, or DIVIDE. Operands are positive integes not exceeding 5.

Output

Print, on a single line, a single integer indicating how many of the first 100 positive integers will
result in you telling your friend that he messed up.

Sample Input Sample Output

1

SUBTRACT 5

4

Sample Input Sample Output

1

DIVIDE 2

50

2015 Pacific Northwest Region Programming Contest—Division 2 5



Sample Input Sample Output

2

ADD 5

DIVIDE 5

80

2015 Pacific Northwest Region Programming Contest—Division 2 6



Problem N — limit 2 seconds

Egg Drop

There is a classic riddle where you are given two eggs and a k-floor building and you want to know
the highest floor from which you can drop the egg and not have it break.

It turns out that you have stumbled upon some logs detailing someone trying this experiment!
The logs contain a series of floor numbers as well as the results of dropping the egg on those floors.
You need to compute two quantities—the lowest floor that you can drop the egg from where the
egg could break, and the highest floor that you can drop the egg from where the egg might not
break.

You know that the egg will not break if dropped from floor 1, and will break if dropped from
floor k. You also know that the results of the experiment are consistent, so if an egg did not break
from floor x, it will not break on any lower floors, and if an egg did break from floor y, it will break
on all higher floors.

Input

The first line of input contains two space-separated integers n and k (1 ≤ n ≤ 100, 3 ≤ k ≤ 100),
the number of egg drops and the number of floors of the building, respectively. Each of the following
n lines contains a floor number and the result of the egg drop, separated by a single space. The
floor number will be between 1 and k, and the result will be either SAFE or BROKEN.

Output

Print, on a single line, two integers separated by a single space. The first integer should be the
number of the lowest floor from which you can drop the egg and it could break and still be consistent
with the results. The second integer should be the number of the highest floor from which you can
drop the egg and it might not break.

2015 Pacific Northwest Region Programming Contest—Division 2 7



Sample Input Sample Output

2 10

4 SAFE

7 BROKEN

5 6

Sample Input Sample Output

3 5

2 SAFE

4 SAFE

3 SAFE

5 4

Sample Input Sample Output

4 3

2 BROKEN

2 BROKEN

1 SAFE

3 BROKEN

2 1

2015 Pacific Northwest Region Programming Contest—Division 2 8



Problem O — limit 2 seconds

Grid

You are on the top left square of an m × n grid, where each square on the grid has a digit on it.
From a given square that has digit k on it, a move consists of jumping exactly k squares in one of
the four cardinal directions. What is the minimum number of moves required to get from the top
left corner to the bottom right corner?

Input

The first line of input contains two space-separated positive integers m and n (1 ≤ m,n ≤ 500). It
is guaranteed that at least one of m and n is greater than 1. The next m lines each consists of n
digits, describing the m× n grid. Each digit is between 0 and 9.

Output

Print, on a single line, a single integer denoting the minimum number of moves needed to get from
the top-left corner to the bottom-right corner. If it is impossible to reach the bottom-right corner,
print IMPOSSIBLE instead.

Sample Input Sample Output

2 2

11

11

2

Sample Input Sample Output

2 2

22

22

IMPOSSIBLE

2015 Pacific Northwest Region Programming Contest—Division 2 9



Sample Input Sample Output

5 4

2120

1203

3113

1120

1110

6

2015 Pacific Northwest Region Programming Contest—Division 2 10



Problem P — limit 2 seconds

Complexity

Define the complexity of a string to be the number of distinct letters in it. For example, the string
string has complexity 6 and the string letter has complexity 4.

You like strings which have complexity either 1 or 2. Your friend has given you a string and
you want to turn it into a string that you like. You have a magic eraser which will delete one letter
from any string. Compute the minimum number of times you will need to use the eraser to turn
the string into a string with complexity at most 2.

Input

The input consists of a single line that contains a single string of at most 100 lowercase ASCII
letters (‘a’–‘z’).

Output

Print, on a single line, the minimum number of times you need to use the eraser.

Sample Input Sample Output

string 4

Sample Input Sample Output

letter 2

Sample Input Sample Output

aaaaaa 0

2015 Pacific Northwest Region Programming Contest—Division 2 11



Sample Input Sample Output

uncopyrightable 13

Sample Input Sample Output

ambidextrously 12

Sample Input Sample Output

assesses 1

Sample Input Sample Output

assassins 2

2015 Pacific Northwest Region Programming Contest—Division 2 12



Problem Q — limit 2 seconds

Excellence

The World Coding Federation is setting up a huge online programming tournament of teams com-
prised of pairs of programmers. Judge David is in charge of putting teams together from the
Southeastern delegation. Every student must be placed on exactly one team of two students.
Luckily, he has an even number of students who want to compete, so that he can make sure that
each student does compete. However, he’d like to maintain his pristine reputation amongst other
judges by making sure that each of the teams he fields for the competition meet some minimum
total rating. We define the total rating of a team to be the sum of the ratings of both individuals
on the team.

Help David determine the maximum value, X, such that he can form teams, each of which have
a total rating greater than or equal to X.

Input

The first line of input contains a single positive integer n (1 ≤ n ≤ 105, n is even), the number
of students who want to enter the online programming tournament. Each of the following n lines
contains one single integer si (1 ≤ si ≤ 106), the rating of student i.

Output

Print, on a single line, the maximum value, X, such that David can form teams where every team
has a total rating greater than or equal to X.

Sample Input Sample Output

4

1

2

3

5

5

2015 Pacific Northwest Region Programming Contest—Division 2 13



Sample Input Sample Output

2

18

16

34

Sample Input Sample Output

4

13

12

19

14

27

2015 Pacific Northwest Region Programming Contest—Division 2 14



Problem R — limit 2 seconds

Class Time

It’s the first day of class! Tom is teaching class and first has to take attendance to see who is in
class. He needs to call the students’ names in alphabetical order by last name. If two students have
the same last name, then he calls the students with that same last name in alphabetical order by
first name. Help him!

Input

The first line of input contains an integer n (1 ≤ n ≤ 100), the number of students in Tom’s class.
Each of the following n lines contains the name of a single student: first name, followed by a single
space, then last name. The first and last name both start with an uppercase letter (‘A’–‘Z’) and
then be followed by one or more lowercase letters (‘a’–‘z’). The first and last name of each student
is no more than 10 letters long each.

It is guaranteed that no two students have exactly the same name, though students may share
the same first name, or the same last name.

Output

Output n lines, the names of the students as Tom calls them in the desired order.

Sample Input Sample Output

3

John Adams

Bob Adam

Bob Adams

Bob Adam

Bob Adams

John Adams

Sample Input Sample Output

1

Coursera Educators

Coursera Educators

2015 Pacific Northwest Region Programming Contest—Division 2 15



2015 Pacific Northwest Region Programming Contest—Division 2 16



Problem S — limit 4 seconds

Surf

Now that you’ve come to Florida and taken up surfing, you love it! Of course, you’ve realized that
if you take a particular wave, even if it’s very fun, you may miss another wave that’s just about
to come that’s even more fun. Luckily, you’ve gotten excellent data for each wave that is going to
come: you’ll know exactly when it will come, how many fun points you’ll earn if you take it, and
how much time you’ll have to wait before taking another wave. (The wait is due to the fact that
the wave itself takes some time to ride and then you have to paddle back out to where the waves
are crashing.) Obviously, given a list of waves, your goal will be to maximize the amount of fun
you could have.

Consider, for example, the following list of waves:

Minute Fun points Wait time

2 80 9

8 50 2

10 40 2

13 20 5

In this example, you could take the waves at times 8, 10 and 13 for a total of 110 fun points. If
you take the wave at time 2, you can’t ride another wave until time 11, at which point only 20 fun
points are left for the wave at time 13, leaving you with a total of 100 fun points. Thus, for this
input, the correct answer (maximal number of fun points) is 110.

Given a complete listing of waves for the day, determine the maximum number of fun points
you could earn.

Input

The first line of input contains a single integer n (1 ≤ n ≤ 300,000), representing the total number
of waves for the day. The ith line (1 ≤ i ≤ n) that follows will contain three space separated
integers: mi, fi, and wi, (1 ≤ mi, fi, wi ≤ 106), representing the time, fun points, and wait time
of the ith wave, respectively. You can ride another wave occurring at exactly time mi + wi after
taking the ith wave. It is guaranteed that no two waves occur at the same time. The waves may
not be listed in chronological order.

2015 Pacific Northwest Region Programming Contest—Division 2 17



Output

Print, on a single line, a single integer indicating the maximum amount of fun points you can get
riding waves.

Sample Input Sample Output

4

8 50 2

10 40 2

2 80 9

13 20 5

110

Sample Input Sample Output

10

2079 809484 180

8347 336421 2509

3732 560423 483

2619 958859 712

7659 699612 3960

7856 831372 3673

5333 170775 1393

2133 989250 2036

2731 875483 10

7850 669453 842

3330913

2015 Pacific Northwest Region Programming Contest—Division 2 18



Problem T — limit 2 seconds

Triangle

Determine if it is possible to produce two triangles of given side lengths, by cutting some rectangle
with a single line segment, and freely rotating and flipping the resulting pieces.

Input

The input consists of two lines. The first line contains three space-separated positive integers,
indicating the desired side lengths of the first triangle. Similarly, the second line contains three
space-separated positive integers, denoting the desired side lengths of the second triangle. It is
guaranteed that the side lengths produce valid triangles. All side lengths are less than or equal to
100.

Output

Print, on a single line, whether there exists a rectangle which could have been cut to form triangles
of the given side lengths. If such a rectangle exists, print YES. Otherwise, print NO.

Sample Input Sample Output

3 4 5

4 3 5

YES

Sample Input Sample Output

3 4 6

4 6 3

NO

Sample Input Sample Output

39 52 65

25 60 65

NO

2015 Pacific Northwest Region Programming Contest—Division 2 19



2015 Pacific Northwest Region Programming Contest—Division 2 20



Problem U — limit 2 seconds

Blur

You have a black and white image that is w pixels wide and h pixels high. You decide to represent
this image with one number per pixel: black is 0, and white is 1. Your friend asks you to blur the
image, resulting in various shades of gray. The way you decide to blur the image is as follows: You
create a new image that is the same size as the old one, and each pixel in the new image has a value
equal to the average of the 9 pixels in the 3 × 3 square centered at the corresponding old pixel.
When doing this average, wrap around the edges, so the left neighbor of a leftmost pixel is in the
rightmost column of the same row, and the top neighbor of an uppermost pixel is on the bottom in
the same column. This way, the 3× 3 square always gives you exactly 9 pixels to average together.
If you want to make the image blurrier, you can take the blurred image and blur it again using the
exact same process.

Given an input image and a fixed number of times to blur it, how many distinct shades of gray
does the final image have, if all the arithmetic is performed exactly?

Warning: Floating point numbers can be finicky; you might be surprised to learn, for example,
that 2/9 + 5/9 may not equal 3/9 + 4/9 if you represent the fractions with floating point numbers!
Can you figure out how to solve this problem without using floating point arithmetic?

Input

The first line of input contains three space-separated integers w, h, and b (3 ≤ w, h ≤ 100, 0 ≤
b ≤ 9), denoting the width and height of the image, and the number of times to blur the image,
respectively. The following h lines of w space-separated integers describe the original image, with
each integer being either 0 or 1, corresponding to the color of the pixel.

Output

Output, on a single line, a single integer equal to the number of distinct shades of gray in the final
image.

2015 Pacific Northwest Region Programming Contest—Division 2 21



Sample Input Sample Output

5 4 1

0 0 1 1 0

0 0 1 1 0

0 0 1 1 0

0 0 1 1 0

3

Sample Input Sample Output

3 3 2

1 0 0

0 1 0

0 1 0

1

2015 Pacific Northwest Region Programming Contest—Division 2 22



Problem V — limit 4 seconds

Gears

A set of gears is installed on the plane. You are given the center coordinate and radius of each
gear. For a given input and output gear, indicate what happens to the output gear if you attempt
to rotate the input gear.

Input

The first line of input contains a single positive integer n (2 ≤ n ≤ 1,000), the total number of
gears. Following this will be n lines, one per gear, containing three space-separated integers xi,
yi, and ri (−104 ≤ xi, yi ≤ 104, 1 ≤ ri ≤ 104), indicating the center coordinate and the radius of
the ith gear. Assume the tooth count for each gear is sufficiently high that the gears always mesh
correctly. It is guaranteed that the gears do not overlap with each other. The input gear is the
first gear in the list, and the output gear is the last gear in the list.

Output

If the input gear cannot move, print, on a single line, “The input gear cannot move.” (without
the quotation marks).

If the input gear can move but is not connected to the output gear, print, on a single line,
“The input gear is not connected to the output gear.” (without the quotation marks).

Otherwise, print, on a single line, the ratio the output gear rotates with respect to the input
gear in the form of “##:##” (without the quotation marks), in reduced form. If the output gear
rotates in the opposite direction as the input gear, write the ratio as a negative ratio. For example,
if the output gear rotates clockwise three times as the input gear rotates counterclockwise twice,
the output should be -3:2.

Sample Input Sample Output

2

0 0 100

200 0 100

-1:1

2015 Pacific Northwest Region Programming Contest—Division 2 23



Sample Input Sample Output

3

0 0 100

200 0 100

400 0 100

1:1

Sample Input Sample Output

16

10 10 5

20 10 5

30 10 5

40 10 5

10 20 5

20 20 5

30 20 5

40 20 5

10 30 5

20 30 5

30 30 5

40 30 5

10 40 5

20 40 5

30 40 5

40 40 5

1:1

Sample Input Sample Output

3

0 0 1

0 3 2

4 0 3

The input gear cannot move.

2015 Pacific Northwest Region Programming Contest—Division 2 24


