
icpc international collegiate

programming contest

ICPC North America Contests

Pacific Northwest Regional Contest

Official Problem Set

2022

2023

NAC

icpc.foundation

icpc global sponsor

programming tools

upsilon pi epsilon

honor society

Pacific Northwest Regional Programming Contest
Division 2

25 February 2023

• The languages supported are C, C++ 17 (with Gnu extensions), Java, Python 3 (with pypy3),
and Kotlin.

• Python 2 and C# are not supported this year.

• For all problems, read the input data from standard input and write the results to standard
output.

• In general, when there is more than one integer or word on an input line, they will be sep-
arated from each other by exactly one space. No input lines will have leading or trailing
spaces, and tabs will never appear in any input.

• Submit only a single source file for each problem.

• Python may not have sufficient performance for many of the problems; use it at your discre-
tion.

Problem A
Three Dice
Time Limit: 5 sec

Given a list of three-letter words, generate one possible set of three, six-sided dice such that each
word can be formed by the top faces of some arrangement of the three dice. You must distribute
18 distinct letters across the 18 total faces of the dice. There may be multiple possible sets of dice
that satisfy the requirement; any correct set will be accepted.

Input

The first line of input contains an integer n (1 ≤ n ≤ 1,000), which is the number of words.

Each of the next n lines contains one three-letter word made up only of lowercase letters (a–z).
There may be duplicate words in the list, and the words might contain identical letters.

Output

Output a single line. If there exists a set of dice that can form all of the words, output any such
set. Output the set of dice as one line with three space-separated strings, each consisting of six
lowercase letters. If no such set of dice can be formed, output a single line with the number 0.

Sample Input 1 Sample Output 1

3
lad
fin
sly

zounds plight fakery

Sample Input 2 Sample Output 2

1
dad

0

Pacific Northwest 2022—Division 2 Problem A: Three Dice 1

Sample Input 3 Sample Output 3

11
aft
cog
far
irk
kit
yes
tau
rag
own
uke
via

vortex whacky fusing

Pacific Northwest 2022—Division 2 Problem A: Three Dice 2

Problem B
Alchemy

Time Limit: 1 sec

You just finished day one of your alchemy class! For your alchemy homework, you have been given
a string of lowercase letters and wish to make it a palindrome. You’re only a beginner at alchemy
though, so your powers are limited. In a single operation, you may choose exactly two adjacent
letters and change each of them into a different lowercase letter. The resulting characters may be
the same as or different from one another, so long as they were both changed by the operation.

Formally, if the string before the operation is s and you chose to change characters si and si+1 to
produce string t, then si 6= ti and si+1 6= ti+1 must be true, but ti = ti+1 is permitted.

Compute the minimum number of operations needed to make the string a palindrome.

Input

The single line of input contains a string of n (2 ≤ n ≤ 100) lowercase letters, the string you are
converting into a palindrome.

Output

Output a single integer, which is the minimum number of operations needed to make the string a
palindrome.

Sample Input 1 Sample Output 1

ioi 0

Sample Input 2 Sample Output 2

noi 1

Sample Input 3 Sample Output 3

ctsc 1

Pacific Northwest 2022—Division 2 Problem B: Alchemy 3

Sample Input 4 Sample Output 4

fool 2

Sample Input 5 Sample Output 5

vetted 2

Pacific Northwest 2022—Division 2 Problem B: Alchemy 4

Problem C
Champernowne Count

Time Limit: 1 sec

The nth Champernowne word is obtained by writing down the first n positive integers and con-
catenating them together. For example, the 10th Champernowne word is “12345678910”.

Given two positive integers n and k, count how many of the first n Champernowne words are
divisible by k.

Input

The single line of input contains two integers, n (1 ≤ n ≤ 105) and k (1 ≤ k ≤ 109).

Output

Output a single integer, which is a count of the first n Champernowne words divisible by k.

Sample Input 1 Sample Output 1

4 2 2

Sample Input 2 Sample Output 2

100 7 14

Sample Input 3 Sample Output 3

314 159 4

Sample Input 4 Sample Output 4

100000 999809848 1

Pacific Northwest 2022—Division 2 Problem C: Champernowne Count 5

This page is intentionally left blank.

Problem D
Hunt the Wumpus

Time Limit: 1 sec

Hunt the Wumpus is a game you play against the computer on a 10× 10 grid. At the beginning of
the game, four wumpuses are randomly placed on the grid (with no two sharing a location). You
need to find and capture all four wumpuses. You guess a square by entering the coordinates as two
decimal digits. If you correctly guess the location of a wumpus, you are told you did so, and that
wumpus is captured and removed from the grid. Whether or not you hit a wumpus, the Manhattan
distance between your guess and the closest wumpus is reported to you. You can use this to locate
and find each wumpus. The game ends when the last wumpus is captured.

You have been asked to write the computer portion of the game. User guesses and randomly-
generated wumpus locations are defined by a two-digit number, where the high digit is x and the
low digit is y for the point (x, y).

To make the game deterministic, we will use our own pseudo-random-number generator, with a
supplied seed s. Each random number is generated by first setting s ← s + floor(s/13) + 15 and
then returning the two low digits of s. The first four distinct numbers generated by this process are
the locations of the four wumpuses. For a seed of 132, the first location is given by the two low
digits of 132 + 10 + 15, which is 57 and corresponds to the position (5, 7).

Input

The first line contains a single integer s (104 ≤ s ≤ 106), the seed for the random number generator.
Each of the remaining lines contains a two-digit number (possibly with leading zeros). These are
the guesses that a player has made, each corresponding to a single grid location.

The input will always be well-formed, and will describe a complete game. The last user guess will
always find the last wumpus. There will be at most 250 guesses in any input.

Output

Output the computer’s response for each player guess. If a guess hits a wumpus, you should
output “You hit a wumpus!” on a line. Whether or not the player hit a wumpus, if any
wumpuses remain uncaptured, output the Manhattan distance to the closest remaining wumpus.
The Manhattan distance between two points (x1, y1) and (x2, y2) is |x1 − x2|+ |y1 − y2|, and will
therefore always be an integer.

At the end of the game, report the total number of moves m required to locate all the wumpuses
by outputting “Your score is m moves.” on a line.

Pacific Northwest 2022—Division 2 Problem D: Hunt the Wumpus 7

Sample Input 1 Sample Output 1

203811
00
01
02
03

You hit a wumpus!
1
You hit a wumpus!
1
You hit a wumpus!
1
You hit a wumpus!
Your score is 4 moves.

Sample Input 2 Sample Output 2

101628
00
40
60
68
78
95

4
You hit a wumpus!
2
You hit a wumpus!
8
1
You hit a wumpus!
5
You hit a wumpus!
Your score is 6 moves.

Pacific Northwest 2022—Division 2 Problem D: Hunt the Wumpus 8

Problem E
Color Tubes

Time Limit: 1 sec

There is a new puzzle generating buzz on social media—Color Tubes. The rules are relatively
simple: you are given n+ 1 tubes filled with 3n colored balls. Each tube can hold at most 3 balls,
and each color appears on exactly 3 balls (so there are n colors).

Using a series of moves, you are supposed to reach a Color Tubes state—each tube should either
hold balls of a single color or it should be empty.

The only move allowed is to take the top ball from one tube and place it into a different tube that
has room for it (i.e. holds at most two balls before the move).

You want to write a program to solve this puzzle for you. Initially, you are not interested in an
optimal solution, but you want your program to be good enough to solve any puzzle configuration
using at most 20n moves.

Input

The first line of input contains a single integer n (1 ≤ n ≤ 1,000), which is the number of colors.

Each of the next n + 1 lines contains three integers b, m and t (0 ≤ b,m, t ≤ n), which are the
descriptions of each tube, where b is the color of the ball on the bottom, m is the color of the ball
in the middle, and t is the color of the ball on the top.

The tubes are numbered from 1 to n + 1 and are listed in order. The colors are numbered from 1
to n. The number 0 describes an empty space. It is guaranteed that no empty space will be below
a colored ball.

Output

On the first line output an integer m, the number of moves that your program will use to solve the
puzzle. Remember, m has to be at most 20n.

On the next m lines, output two space-separated integers u and v that describe a move (1 ≤ u, v ≤
n + 1). In each move, you are taking the uppermost ball out of tube u and placing it in tube v,
where it will fall until it hits the uppermost ball already in that tube, or the bottom of the tube if
the tube is empty.

Your solution will be deemed incorrect if it uses more than 20n moves, or any of the moves are not
allowed, or the final configuration is not a Color Tubes state.

Pacific Northwest 2022—Division 2 Problem E: Color Tubes 9

Sample Input 1 Sample Output 1

3
2 2 0
1 3 1
3 1 2
3 0 0

6
3 1
2 3
2 4
3 2
3 2
3 4

Sample Input 2 Sample Output 2

1
0 0 0
1 1 1

0

Pacific Northwest 2022—Division 2 Problem E: Color Tubes 10

Problem F
Food Processor

Time Limit: 2 sec

You have a food processor with a variety of blades that can be attached to it, as well as some food
you would like to process into smaller pieces.

The food processor can have one blade attached at any time. Each blade processes food by reducing
its average piece size at a particular exponential rate, but it also has a maximum average piece size
requirement; if the average piece size of the food is too big for the blade, the food processor will
get stuck. Given a starting average food piece size, a target average piece size, and a set of blades
for your food processor, determine the minimum amount of processing time needed to process
your food into the target average piece size.

Note that we only care about the time spent actively processing food; we do not track time spent
switching out blades or loading/unloading the food processor.

Input

The first line of input contains three integers s, t, and n (1 ≤ t < s ≤ 106, 1 ≤ n ≤ 105), where s
is the starting average piece size, t is the target average piece size, and n is the number of blades.

Each of the next n lines contains two integers m and h (1 ≤ m,h ≤ 106). These are the blades,
where m is the maximum average piece size of the blade and h is the number of seconds the blade
needs to halve the average piece size.

Output

Output a single number, which is the minimum amount of time in seconds needed to process the
food to the target average piece size. If it is not possible to reach the target, output −1. Your
answer should have a relative error of at most 10−5.

Sample Input 1 Sample Output 1

10 1 2
10 10
4 5

23.219281

Pacific Northwest 2022—Division 2 Problem F: Food Processor 11

Sample Input 2 Sample Output 2

10000 9999 1
10000 1

1.4427671804501932E-4

Pacific Northwest 2022—Division 2 Problem F: Food Processor 12

Problem G
Fading Wind

Time Limit: 1 sec

You’re competing in an outdoor paper airplane flying contest, and you want to predict how far your
paper airplane will fly. Your design has a fixed factor k, such that if the airplane’s velocity is at
least k, it will rise. If its velocity is less than k it will descend.

Here is how your paper airplane will fly:

• You start by throwing your paper airplane with a horizontal velocity of v at a height of h.
There is an external wind blowing with a strength of s.

• While h > 0, repeat the following sequence:

– Increase v by s. Then, decrease v by max(1,
⌊

v
10

⌋
). Note that

⌊
v
10

⌋
is the value of v

10
,

rounded down to the nearest integer if it is not an integer.

– If v ≥ k, increase h by one.

– If 0 < v < k, decrease h by one. If h is zero after the decrease, set v to zero.

– If v ≤ 0, set h to zero and v to zero.

– Your airplane now travels horizontally by v units.

– If s > 0, decrease it by 1.

Compute how far the paper airplane travels horizontally.

Input

The single line of input contains four integers h, k, v, and s (1 ≤ h, k, v, s ≤ 103), where h is your
starting height, k is your fixed factor, v is your starting velocity, and s is the strength of the wind.

Output

Output a single integer, which is the distance your airplane travels horizontally. It can be shown
that this distance is always an integer.

Sample Input 1 Sample Output 1

1 1 1 1 1

Pacific Northwest 2022—Division 2 Problem G: Fading Wind 13

Sample Input 2 Sample Output 2

2 2 2 2 9

Sample Input 3 Sample Output 3

1 2 3 4 68

Sample Input 4 Sample Output 4

314 159 265 358 581062

Pacific Northwest 2022—Division 2 Problem G: Fading Wind 14

Problem H
Creative Accounting

Time Limit: 5 sec

When accounting for the profit of a business, we can divide consecutive days into fixed-sized
segments and calculate each segment’s profit as the sum of all its daily profits. For example,
we could choose seven-day segments to do our accounting in terms of weekly profit. We also
have the flexibility of choosing a segment’s starting day. For example, for weekly profit we can
start a week on a Sunday, Monday, or even Wednesday. Choosing different segment starting days
may sometimes change how the profit looks on the books, making it more (or less) attractive to
investors.

As an example, we can divide ten consecutive days of profit (or loss, which we denote as negative
profit) into three-day segments as such:

3, 2,−7 | 5, 4, 1 | 3, 0,−3 | 5

This gives us four segments with profit −2, 10, 0, 5. For the purpose of this division, partial seg-
ments with fewer than the fixed segment size are allowed at the beginning and at the end. We say
a segment is profitable if it has a strictly positive profit. In the above example, only two out of the
four segments are profitable.

If we try a different starting day, we can obtain:

3, 2 | −7, 5, 4 | 1, 3, 0 | −3, 5

This gives us four segments with profit 5, 2, 4, 2. All four segments are profitable, which makes
our business look much more consistent.

You’re given a list of consecutive days of profit, as well as an integer range. If we can choose any
segment size within that range and any starting day for our accounting, what is the minimum and
maximum number of profitable segments that we can have?

Input

The first line of input has three space-separated integers n, ` and h (1 ≤ ` ≤ h ≤ n ≤ 3 × 104,
h − ` ≤ 1,000), where n is the number of days in the books, ` is the minimum possible choice of
segment size, and h is the maximum possible choice of segment size.

Each of the next n lines contains a single integer p (−104 ≤ p ≤ 104). These are the daily profits,
in order.

Pacific Northwest 2022—Division 2 Problem H: Creative Accounting 15

Output

Output on a single line two space-separated integers min and max, where min is the minimum
number of profitable segments possible, and max is the maximum number of profitable segments
possible. Both min and max are taken over all possible choices of segment size between ` and h
and all possible choices of starting day.

Sample Input 1 Sample Output 1

10 3 5
3
2
-7
5
4
1
3
0
-3
5

2 4

Pacific Northwest 2022—Division 2 Problem H: Creative Accounting 16

Problem I
I Could Have Won

Time Limit: 1 sec

“We will be closing in about 5 minutes. Thank you for visiting the ICPC gym today.”

With this announcement, Alice and Bob stopped playing their rock-paper-scissors marathon in the
middle of the 10th game. Each player scores a point if their throw beats the other player’s throw.
Each game was played by the first-to-11 rule, meaning that whoever scores 11 points first wins
the game. Today, Bob narrowly defeated Alice by a single game; he scored 11 points first in five
games, while Alice only scored 11 points first in four games.

After carefully inspecting how each game was played, however, Alice realized that she could have
won more games than Bob if they played under slightly different rules, such as first-to-5 or first-
to-8, instead of the regular first-to-11.

Given the sequence of points scored by Alice and Bob, determine all values of k such that Alice
would have won more games than Bob under the first-to-k rule.

Both Alice and Bob start with zero points at the beginning of a game. As soon as one player reaches
k points, that player wins the game, and a new game starts. Alice wins a game if she scores k points
before Bob does. Neither player wins the game if it’s interrupted by the gym closing before either
player reaches k points.

Input

The single line of input consists of a string of uppercase letters “A” or “B”, denoting who scored
each point from the beginning of the rock-paper-scissors marathon. The length of the string is
between 1 and 2,000 letters, inclusive. “A” means Alice scored the point, “B” means Bob scored
the point.

Output

On the first line, output the number of positive integers k for which a first-to-k rule would have
made Alice win more games than Bob. If this number isn’t zero, on the next line output all such
values of k in increasing order, separated by spaces.

Sample Input 1 Sample Output 1

BBAAABABBAAABB 3
3 6 7

Pacific Northwest 2022—Division 2 Problem I: I Could Have Won 17

Sample Input 2 Sample Output 2

AABBBAAB 2
2 4

Pacific Northwest 2022—Division 2 Problem I: I Could Have Won 18

Problem J
Sun and Moon

Time Limit: 1 sec

You recently missed an eclipse and are waiting for the next one! To see any eclipse from your
home, the sun and the moon must be in alignment at specific positions. You know how many years
ago the sun was in the right position, and how many years it takes for it to get back to that position.
You know the same for the moon. When will you see the next eclipse?

Input

The input consists of two lines.

The first line contains two integers, ds and ys (0 ≤ ds < ys ≤ 50), where ds is how many years
ago the sun was in the right position, and ys is how many years it takes for the sun to be back in
that position.

The second line contains two integers, dm and ym (0 ≤ dm < ym ≤ 50), where dm is how many
years ago the moon was in the right position, and ym is how many years it takes for the moon to be
back in that position.

Output

Output a single integer, the number of years until the next eclipse. The data will be set in such a
way that there is not an eclipse happening right now and there will be an eclipse within the next
5,000 years.

Sample Input 1 Sample Output 1

3 10
1 2

7

Pacific Northwest 2022—Division 2 Problem J: Sun and Moon 19

This page is intentionally left blank.

Problem K
Chocolate Chip Fabrication

Time Limit: 1 sec

You are making a chocolate chip cookie using a machine that has a rectangular pan composed of
unit squares. You have determined the shape of your cookie, which occupies some squares in that
area. Each square of your cookie must be chocolate chipified.

To make the cookie you will repeatedly perform the following two steps:

1. You place cookie dough in some unit squares.

2. You expose the cookie dough to a shallow chocolate chip solution. Any cookie dough square
that does not have all four adjacent squares (up, down, left, right) filled with cookie dough
becomes chocolate chipified. Note that any cookie dough in a square on the boundary of the
pan always gets chipified.

The following example shows how to make a cookie of the shape shown on the left (s):

(s) (a1) (a2) (b1) (b2)
-X-X- -D-D- -C-C- -C-C- -C-C-
XXXXX -D-D- -C-C- DCDCD CCCCC
XXXXX -DDD- -CCC- DCCCD CCCCC
-XXX- --D-- --C-- -DCD- -CCC-
--X-- ----- ----- --D-- --C--

First you place cookie dough in 8 squares (a1). All squares become chipified after the first solution
exposure (a2). You place cookie dough in 8 more squares (b1). The second exposure makes every
square chipified and completes the cookie (b2).

Your chocolate chip solution is expensive, so you want to ensure that you perform the exposure as
few times as possible. Given a cookie shape, determine the minimum number of chocolate chip
solution exposures required to make the cookie.

Input

The first line of input contains two integers n and m (1 ≤ n,m ≤ 1,000), indicating the pan has n
rows and m columns of unit squares.

Each of the next n lines contains a string of exactly m characters, where each character is either
“X”, representing a square occupied by your cookie, or “-”, representing an empty square.

The shape of your cookie occupies at least one square. Note that the shape may consist of multiple
pieces that are disconnected.

Pacific Northwest 2022—Division 2 Problem K: Chocolate Chip Fabrication 21

Output

Output the minimum number of chocolate chip solution exposures required to make your cookie.

Sample Input 1 Sample Output 1

5 5
-X-X-
XXXXX
XXXXX
-XXX-
--X--

2

Sample Input 2 Sample Output 2

4 5
--XXX
--X-X
X-XXX
XX---

1

Sample Input 3 Sample Output 3

5 5
XXXXX
XXXXX
XXXXX
XXXXX
XXXXX

3

Pacific Northwest 2022—Division 2 Problem K: Chocolate Chip Fabrication 22

Problem L
Distinct Parity Excess

Time Limit: 3 sec

A property of any positive integer is its prime parity, which is derived from the count of its distinct
prime factors. If this count is even, the prime parity is even; if the count is odd, the prime parity is
odd.

You are given a sequence of ranges to test. Each range is given as two numbers a and b, defining
the range from a to b inclusive. You want to compute the excess of even parity integers over odd
parity integers over this range. If there are more odd parity integers, the computed difference will
be negative.

Input

The first line of the input contains a single integer n (1 ≤ n ≤ 100), which is the number of ranges
to test.

Each of the next n lines contains two integers a and b (2 ≤ a ≤ b ≤ 107), which is a range to test.

Output

Output n lines, one for each range in the input. For each range, output a single integer giving the
excess of even parity integers over odd parity integers.

Sample Input 1 Sample Output 1

3
2 2
2 5
2 10

-1
-4
-5

Pacific Northwest 2022—Division 2 Problem L: Distinct Parity Excess 23

Sample Input 2 Sample Output 2

8
2 100
2 50
50 100
2 1000
100 143
2 1000000
80000 90000
1000000 1000000

13
-1
15
63
0
-1909
-31
1

Pacific Northwest 2022—Division 2 Problem L: Distinct Parity Excess 24

Problem M
Restaurant Opening

Time Limit: 1 sec

Image by wirestock on Freepik

It is said that the three most important factors for determining whether
or not a business will be successful are location, location, and location.
The Incredible Cooks Preparing Cuisine are opening a new restaurant
in the International City Promoting Cooking, and they have hired you
to find the optimal location for their restaurant.

You decide to model the city as a grid, with each grid square having
a specified number of people living in it. The distance between two
grid squares (r1, c1) and (r2, c2) is |r1 − r2| + |c1 − c2|. In order to
visit the restaurant, each potential customer would incur a cost equal
to the minimum distance from the grid square in which they live to the
grid square containing the proposed location of the restaurant. The total
cost for a given restaurant location is defined as the sum of the costs of
everyone living in the city to visit the restaurant.

Given the current city layout, compute the minimum total cost if the Incredible Cooks Preparing
Cuisine select their next restaurant location optimally.

Input

The first line of input contains two integers, n and m (1 < n,m ≤ 50), where n is the number of
rows in the city grid and m is the number of columns.

Each of the next n lines contains m integers gij (0 ≤ gij ≤ 50), which specifies the number of
people living in the grid square at row i, column j.

Output

Output a single integer, which is the total cost if the restaurant is selected optimally.

Sample Input 1 Sample Output 1

2 2
1 2
3 4

7

Pacific Northwest 2022—Division 2 Problem M: Restaurant Opening 25

https://www.freepik.com/free-photo/vertical-shot-orange-blue-neon-sign-that-says-open-bar_17247073.htm#page=10&query=restaurant%20grand%20opening&position=3&from_view=search&track=ais

Sample Input 2 Sample Output 2

1 10
3 49 4 31 10 31 50 24 10 42

591

Pacific Northwest 2022—Division 2 Problem M: Restaurant Opening 26

