
Pacific Northwest Regional Programming Contest
Division 1

6 March 2021

• The languages supported are C, C++ 17 (with Gnu extensions), Java, Python 3 (with pypy3),
and Kotlin.

• Python 2 and C# are not supported this year.

• For all problems, read the input data from standard input and write the results to standard
output.

• In general, when there is more than one integer or word on an input line, they will be sep-
arated from each other by exactly one space. No input lines will have leading or trailing
spaces, and tabs will never appear in any input.

• Submit only a single source file for each problem.

• Python may not have sufficient performance for many of the problems; use it at your discre-
tion.

Problem A
No Thanks!

Time Limit: 1

In the card game “No Thanks,” the deck of cards consists of 36 cards numbered 1–36, and players
collect cards to their score pile as the game is played. A player’s final score is the sum of the
numbers on their collected cards, with one exception: if a player has collected any cards with two
or more consecutive numbers, only the smallest number of that group counts toward the score.
Your job is to compute the score for a single player’s pile of cards, though here we allow play with
a deck much larger than 36 cards.

Input

The first line contains one integer, n, representing the number of cards collected. The second
line contains n integers representing the numbers on the collected cards. You may assume that
1 ≤ n ≤ 90 000, all card values are in the range 1 . . . 90 000 inclusive, and no card value is
repeated.

Output

Output a single line containing the score for the given set of cards.

Sample Input 1 Sample Output 1

5
1 7 5 3 4

11

Sample Input 2 Sample Output 2

6
2 1 3 8 4 5

9

Pacific Northwest 2020—Division 1 Problem A: No Thanks! 1

Problem B
Exam Manipulation

Time Limit: 1

A group of students is taking a True/False exam. Each question is worth one point. You, as their
teacher, want to make your students look as good as possible—so you cheat! (I know, you would
never actually do that.) To cheat, you manipulate the answer key so that the lowest score in the
class is as high as possible.

What is the best possible lowest score you can achieve?

Input

The first line of input contains two integers n (1 ≤ n ≤ 1,000) and k (1 ≤ k ≤ 10), where n is the
number of students, and k is the number of True/False questions on the exam.

Each of the next n lines contains a string of length k, consisting only of upper-case ‘T’ and upper-
case ‘F’. This string represents the answers that a student submitted, in the order the questions
were given.

Output

Output, on a single line, the best possible lowest score in the class.

Sample Input 1 Sample Output 1

5 4
TFTF
TFFF
TFTT
TFFT
TFTF

2

Sample Input 2 Sample Output 2

3 5
TFTFT
TFTFT
TFTFT

5

Pacific Northwest 2020—Division 1 Problem B: Exam Manipulation 2

Problem C
Painted Corridors

Time Limit: 5

The Institute of Colorfully Painted Corridors is planning the construction of a new building. The
building has numerous junctions, and corridors that each connect a pair of junctions. The corridors
will be painted by amazing new painting robots that drive along the corridors and paint all the
walls as they go. The architect has specified the colors of some of the corridors, which may be red,
orange, yellow, green, blue, or purple. However, there is only a budget for three painting robots, so
there will be a single robot for each primary color (red, yellow, or blue). In addition, these robots
are the cheapest possible version, and cannot turn their paint sprayer off (though they can go as
fast or as slow as desired with no problems; they can even stop moving entirely).

If a corridor needs to be painted a secondary color (orange, green, or purple), in order for the
paints to mix properly, the two robots with the appropriate primary colors must travel down the
corridor in the same direction at the same time to create the correct color. The color mixing rules
are: orange = red + yellow, green = yellow + blue, and purple = red + blue. A corridor that
is unspecified in the plan may be painted any color, or left unpainted.

Corridors may be painted multiple times, provided that each time they are painted with the correct
color. Corridors with no specified color can be painted multiple times with different colors. All
corridors can be travelled along in both directions. The robots may end up at any junctions after
painting all the corridors.

Given the architect’s design, is it possible for the painting robots to paint the corridors the desired
colors?

Input

The first line of input contains five integers, n (2 ≤ n ≤ 100), m (1 ≤ m ≤ n·(n−1)
2

),
r, b and y (1 ≤ r, b, y ≤ n), where n is the number of junctions, m is the number of corridors, and r,
b and y are the initial junctions of the red, blue, and yellow painting robots respectively. Junctions
are numbered 1 through n. Each of the next m lines contains two integers i, j (1 ≤ i < j ≤ n),
and a single character c which is one of R, O, Y, G, B, P, X. The integers i, j indicate that there is a
corridor between junction i and junction j, with c indicating the desired color. (R, O, Y, G, B, P, X,
corresponding to Red, Orange, Yellow, Green, Blue, Purple, and Unspecified, respectively.) There
is at most one corridor between each pair of junctions.

Pacific Northwest 2020—Division 1 Problem C: Painted Corridors 3

Output

Output a single integer, 1 if it is possible to paint the corridors as described and 0 otherwise.

Sample Input 1 Sample Output 1

6 5 1 2 5
1 3 X
2 3 X
3 4 P
4 5 X
4 6 Y

1

Sample Input 2 Sample Output 2

6 5 1 2 5
1 3 X
2 3 X
3 4 O
4 5 X
4 6 Y

0

Sample Input 3 Sample Output 3

6 5 1 2 5
1 3 X
2 3 X
3 4 P
4 5 X
4 6 G

1

Pacific Northwest 2020—Division 1 Problem C: Painted Corridors 4

Problem D
Basic Basis

Time Limit: 2

You are given a sequence of n bit strings b1, b2, . . . , bn, each with k × 4 bits.

You are also given another sequence of m bit strings a1, a2, . . . , am, each also with k × 4 bits.

Let f(x) denote the minimum index i such that it is possible to take a non-empty subset of
b1, b2, . . . , bi, XOR them all together, and get x. If there is no such index, f(x) = −1.

Print the values f(a1), f(a2), . . . , f(am).

Input

The first line of input contains three integers n (1 ≤ n ≤ 1,000), m (1 ≤ m ≤ 1,000) and k
(1 ≤ k ≤ 40), where n is the length of sequence b, m is the length of sequence a, and the elements
of both sequences are bit strings with k × 4 bits.

Each of the next n lines contains a hexadecimal representation of bi as a string of length k. The
strings consist only of hexadecimal digits (‘0’–‘9’ and ‘a’–‘f’).

Then, each of the next m lines contains a hexadecimal representation of ai in the same format as
above.

Output

Output m lines with a single integer on each line, where the integer on the ith line is f(ai).

Sample Input 1 Sample Output 1

3 5 2
02
e1
fa
02
e3
1b
e1
ff

1
2
3
2
-1

Pacific Northwest 2020—Division 1 Problem D: Basic Basis 5

Sample Input 2 Sample Output 2

5 6 2
01
02
04
08
10
01
02
03
04
05
64

1
2
2
3
3
-1

Pacific Northwest 2020—Division 1 Problem D: Basic Basis 6

Problem E
Bitonic Ordering

Time Limit: 2

Noah suggests the following card game: You are given a deck of cards, each with a distinct positive
integer value written on it. The cards are shuffled and placed in a row. Your objective is to
arrange the cards in the row so that the values are monotonically increasing initially, and then
monotonically decreasing for the remainder of the sequence.

The only move that is allowed is that two neighboring cards may swap positions. Cards may only
swap positions if they are adjacent to each other.

Note that in the final ordered sequence, the initial increasing portion of the sequence may be empty
(such that the whole sequence is in descending order). Likewise it is allowed for the decreasing
portion of the sequence to be empty.

What is the fewest number of moves needed to get the cards arranged in the proper order?

Input

The first line of input contains a single integer n (1 ≤ n ≤ 3 · 105), which is the number of cards.

Each of the next n lines contains a single integer c (1 ≤ c ≤ 109). These are the cards, in their
initial order. They will all be distinct.

Output

Output a single integer, which is the fewest number of moves needed to arrange the cards as
specified.

Pacific Northwest 2020—Division 1 Problem E: Bitonic Ordering 7

Sample Input 1 Sample Output 1

8
7
4
8
10
1
2
6
9

7

Pacific Northwest 2020—Division 1 Problem E: Bitonic Ordering 8

Problem F
Derangement Rotations

Time Limit: 1

A Derangement is a permutation p of 1, 2, . . . , n where pi 6= i for all i from 1 to n.

A rotation of a sequence a1, a2, . . . , an with offset k (1 ≤ k ≤ n) is equal to the sequence ak, ak+1,
. . ., an, a1, a2, . . ., ak−1. A sequence of length n has at most n distinct rotations.

Given a derangement D, let f(D) denote the number of distinct rotations of D that are also de-
rangements. For example, f([2, 1]) = 1, f([3, 1, 2]) = 2.

Given n and a prime number p, count the number of derangements D of 1, 2, . . . , n such that
f(D) = n− 2, modulo p.

Input

The single line of input contains two integers n (3 ≤ n ≤ 106) and p (108 ≤ p ≤ 109 + 7), where
n is a permutation size, and p is a prime number.

Output

Output a single integer, which is the number of derangements D of size n with f(D) = n − 2,
modulo p.

Sample Input 1 Sample Output 1

3 1000000007 0

Sample Input 2 Sample Output 2

6 999999937 20

Pacific Northwest 2020—Division 1 Problem F: Derangement Rotations 9

Problem G
Ant Typing

Time Limit: 1

Consider a configurable keyboard where keys can be moved about. An ant is walking on the top
row of this keyboard and needs to type a numeric string. The ant starts on the leftmost key of the
top row, which contains 9 keys, some permutation of the digits from 1 to 9. On a given second, the
ant can perform one of three operations:

1. Stay on that key. The digit corresponding to that key will be entered.

2. Move one key to the left. This can only happen if the ant is not on the leftmost key.

3. Move one key to the right. This can only happen if the ant is not on the rightmost key.

Compute the minimum number of seconds needed for the ant to type out the given numeric string,
over all possible numeric key permutations.

Input

The single line of input contains a single string s (1 ≤ |s| ≤ 105) consisting only of numeric digit
characters from 1 to 9. This is the numeric string that the ant needs to type.

Output

Output a single integer, which is the minimum number of seconds needed for the ant to type out
the given numeric string, over all possible numeric key permutations.

Sample Input 1 Sample Output 1

78432579 20

Pacific Northwest 2020—Division 1 Problem G: Ant Typing 10

Problem H
Dominating Duos

Time Limit: 4

A group of people are standing in a line. Each person has a distinct height. You would like to
count the number of unordered pairs of people in the line such that they are taller than everyone in
between them in the line.

More formally, let d be a sequence of the heights of the people in order from left to right. We want
to count the number of pairs of indices i and j with i < j such that for all k with i < k < j,
di > dk and dj > dk. Note that if j = i + 1 (i.e., there are no k’s between i and j), it is trivially
true.

Input

The first line of input contains an integer n (2 ≤ n ≤ 106), which is the number of people.

Each of the next n lines contains a single integer di (1 ≤ di ≤ n). These are the heights of the
people in the group, in the order in which they’re standing. The sequence is guaranteed to be a
permutation of the integers 1 through n.

Output

Output a single integer, which is the number of pairs of people who are taller than everyone be-
tween them.

Sample Input 1 Sample Output 1

3
2
1
3

3

Pacific Northwest 2020—Division 1 Problem H: Dominating Duos 11

Sample Input 2 Sample Output 2

6
1
3
2
6
4
5

7

Pacific Northwest 2020—Division 1 Problem H: Dominating Duos 12

Problem I
TripTik

Time Limit: 9

Have you ever been on a long road journey? AAA (the American Automobile Association) has
a tool for long road trips. It’s called a TripTik, and it follows the highways, showing points of
interest.

You are building a TripTik app, which allows users to see what’s on their route. It models a
highway as a straight line, and points of interest as points along that line. All points have an
integer coordinate as well as a unique integral weight. Your app provides a viewport, which can
scale in and out. Also, to prevent the display from becoming too cluttered, only a small number of
the points with the highest weights are shown. The initial viewport is centered at 0.0, and shows
from −1.0 to 1.0 on the line.

There are three valid operations for changing your viewport:

1. Zoom out: double the dimensions of your viewport while keeping the center the same; this
can always be done regardless of the current dimensions of the viewport.

2. Zoom in: halve the dimensions of your viewport while keeping the center the same; this can
always be done regardless of the current dimensions of the viewport.

3. Recenter: change the center of your viewport to be equal to a point of interest visible in your
viewport (including the boundary).

There is an important caveat: Your TripTik app will not render all points of interest in a given
viewport; instead, it will only render a certain number of points in the viewport with the highest
weights. The remaining points with lower weight are not visible, and therefore are not valid targets
for the recenter operation.

For each point of interest, determine the minimum number of operations needed to go from the
starting viewport to a viewport where that point of interest is centered and visible. Consider each
point of interest independently.

Input

The first line of input contains two integers n (1 ≤ n ≤ 105) and k (1 ≤ k ≤ 4), where n is the
number of points, and k is the maximum number of points visible in the viewport.

Each of the next n lines contains a single integer x (|x| ≤ 108, x 6= 0). These are the points of
interest. The weight of each point is equal to its position in the list, with lower weights earlier in
the list. All points will be distinct.

Pacific Northwest 2020—Division 1 Problem I: TripTik 13

Output

Output n lines, each with a single integer, indicating the minimum number of operations necessary
to get from the starting viewport to a viewport which is centered on the corresponding input point
and can see that point. Output−1 if this isn’t possible. The order of output lines should correspond
to the order of inputs for which they’re the answer.

Sample Input 1 Sample Output 1

4 2
100
4
1
3

-1
5
1
3

Pacific Northwest 2020—Division 1 Problem I: TripTik 14

Problem J
Longest Common Subsequence

Time Limit: 1

You are given n strings, each a permutation of the first k upper-case letters of the alphabet.

String s is a subsequence of string t if and only if it is possible to delete some (possibly zero)
characters from the string t to get the string s.

Compute the length of the longest common subsequence of all n strings.

Input

The first line of input contains two integers n (1 ≤ n ≤ 105) and k (1 ≤ k ≤ 26), where n is
the number of strings, and the strings are all permutations of the first k upper-case letters of the
alphabet.

Each of the next n lines contains a single string t. It is guaranteed that every t contains each of the
first k upper-case letters of the alphabet exactly once.

Output

Output a single integer, the length of the longest subsequence that appears in all n strings.

Sample Input 1 Sample Output 1

2 3
BAC
ABC

2

Sample Input 2 Sample Output 2

3 8
HGBDFCAE
ADBGHFCE
HCFGBDAE

3

Pacific Northwest 2020—Division 1 Problem J: Longest Common Subsequence 15

Sample Input 3 Sample Output 3

6 8
AHFBGDCE
FABGCEHD
AHDGFBCE
DABHGCFE
ABCHFEDG
DGABHFCE

4

Pacific Northwest 2020—Division 1 Problem J: Longest Common Subsequence 16

Problem K
Condorcet

Time Limit: 2

Consider an election where there are some candidates, one winner, and each voter has a complete
ranked preference of the candidates. One possible method of determining the winner is to examine
each pair of candidates and see which would win in a head-to-head matchup (i.e., which candidate
has more voters that rank them higher than their opponent) and then see if there is a single candidate
that wins all their head-to-head matchups. This is called the Condorcet Method.

For simplicity, let ABC denote a vote that prefers A over B, and B over C. As an example, imagine
that there are three votes: ABC, BAC, and CAB. Then A wins in a head-to-head matchup against B
2:1, and A also wins against C 2:1, so we could declare A the winner overall.

Note that a winner does not always exist; for example, imagine that the three votes were ABC,
BCA, and CAB instead. Then A wins against B 2:1, B wins against C 2:1, and C wins against A
2:1. There is no single candidate that wins all their head-to-head matchups.

You are given the candidates and a set of votes. What is the minimum number of additional voters
you would need to add (whose preferences you can individually control) in order to ensure that
no overall winner exists? Assume that ties are broken by some tiebreaker you do not control and
cannot predict. Therefore, you need to have every candidate lose a head-to-head matchup with
some other candidate.

Input

The first line of input contains two integers, n (3 ≤ n ≤ 5) and m (1 ≤ m ≤ n!), where n is the
number of candidates, and m is the number of vote tally lines. The candidates are represented by
the first n upper-case letters of the alphabet.

Each of the next m lines contains a string s and an integer k (1 ≤ k ≤ 106). These are the vote
tallies, which each consist of a string s defining the vote, and an integer count k indicating how
many votes of type s are represented by that tally line. The string s describing a vote contains the
first n upper-case letters, each exactly once, in some order. The votes in the vote tally lines are
unique.

Output

Output a single integer, which is the minimum number of additional voters needed to ensure that
no overall winner exists.

Pacific Northwest 2020—Division 1 Problem K: Condorcet 17

Sample Input 1 Sample Output 1

3 6
ABC 1
ACB 2
BAC 3
BCA 4
CAB 5
CBA 6

6

Pacific Northwest 2020—Division 1 Problem K: Condorcet 18

Problem L
Kth Subtree

Time Limit: 1

You are given an unrooted labeled tree. A subtree is a connected subgraph of this tree. The size of
a subtree is the number of nodes in the subtree. Two subtrees are different if there is at least one
node which is in one but not the other. The largest subtree is the original tree itself.

Compute the size of the Kth smallest non-empty subtree.

Input

The first line of input contains two integers n (1 ≤ n ≤ 5,000) and K (1 ≤ K ≤ 1018), where n is
the number of nodes in the tree, and you’re looking for the size of the Kth smallest subtree. The
nodes are numbered 1 through n.

Each of the next n − 1 lines contains a pair of integers u and v (1 ≤ u, v ≤ n, u 6= v), which
represents an undirected edge between nodes u and v. All edges are distinct. It is guaranteed that
the edges form a single tree.

Output

Output a single integer, which is the number of nodes in the Kth smallest non-empty subtree of the
input tree. If there are fewer than K non-empty subtrees of the given tree, output −1.

Sample Input 1 Sample Output 1

2 1
1 2

1

Sample Input 2 Sample Output 2

2 3
1 2

2

Pacific Northwest 2020—Division 1 Problem L: Kth Subtree 19

Sample Input 3 Sample Output 3

5 10
1 2
2 3
3 4
4 5

3

Pacific Northwest 2020—Division 1 Problem L: Kth Subtree 20

Problem M
Bad Packing

Time Limit: 6

We have a knapsack of integral capacity and some objects of assorted integral sizes. We attempt to
fill the knapsack up, but unfortunately, we are really bad at it, so we end up wasting a lot of space
that can’t be further filled by any of the remaining objects. In fact, we are optimally bad at this!
How bad can we possibly be?

Figure out the least capacity we can use where we cannot place any of the remaining objects in the
knapsack. For example, suppose we have 3 objects with weights 3, 5 and 3, and our knapsack has
capacity 6. If we foolishly pack the object with weight 5 first, we cannot place either of the other
two objects in the knapsack. That’s the worst we can do, so 5 is the answer.

Input

The first line of input contains two integers n (1 ≤ n ≤ 1,000) and c (1 ≤ c ≤ 105), where n is the
number of objects we want to pack and c is the capacity of the knapsack.

Each of the next n lines contains a single integer w (1 ≤ w ≤ c). These are the weights of the
objects.

Output

Output a single integer, which is the least capacity we can use where we cannot place any of the
remaining objects in the knapsack.

Sample Input 1 Sample Output 1

3 6
3
5
3

5

Pacific Northwest 2020—Division 1 Problem M: Bad Packing 21

Problem N
Exciting Tournament

Time Limit: 1

A group of players compete in a no-holds-barred tournament.

Each player has a unique skill level (represented as an integer). In each game, two players play,
and the player of higher skill level wins. The player of lower skill level is immediately eliminated
from the tournament! The tournament continues until there is only one player left.

Due to scheduling constraints, each player has a limit on the maximum number of games they can
play. Interestingly, this is the only constraint that the tournament bracket needs to meet. In other
words, the bracket may not necessarily have the shape of a balanced binary tree, as long as every
player plays at most their maximum number of games before getting eliminated or winning the
entire tournament.

As a tournament organizer, you are free to choose any valid bracket. Given the list of participants,
you wonder how exciting (or not exciting) the tournament can get. Concretely, the excitement
of a game is defined as the bitwise XOR of the two players’ skill levels. The excitement of the
tournament is simply the sum of the excitement of each game.

Compute the minimum and maximum possible excitement values of the entire tournament.

Input

The first line of input contains a single integer n (3 ≤ n ≤ 100), which is the number of players in
the tournament.

Each of the next n lines contains two integers s (0 ≤ s < 230) and g (2 ≤ g < n). Each line
describes a single player; s is the skill level of the player, and the g is the limit on the number of
games that player can play.

Output

Output two space-separated integers on a single line, which are the minimum and maximum pos-
sible excitement values of the entire tournament, minimum first.

Pacific Northwest 2020—Division 1 Problem N: Exciting Tournament 22

Sample Input 1 Sample Output 1

4
41 2
13 2
36 3
17 3

94 110

Sample Input 2 Sample Output 2

6
66 5
628 4
216 5
78 4
230 5
74 3

882 2650

Pacific Northwest 2020—Division 1 Problem N: Exciting Tournament 23

Problem O
Rainbow Numbers

Time Limit: 1

Define a rainbow number as an integer that, when represented in base 10 with no leading zeros,
has no two adjacent digits the same.

Given lower and upper bounds, count the number of rainbow numbers between them (inclusive).

Input

The first line of input contains a single integer L (1 ≤ L < 1010
5), which is the lower bound.

The second line of input contains a single integer U (1 ≤ U < 1010
5), which is the upper bound.

It is guaranteed that L ≤ U . Note that the limits are not a misprint; L and U can be up to 105 digits
long.

Output

Output a single integer, which is the number of rainbow numbers between L and U (inclusive).
Because this number may be very large, output it modulo 998,244,353.

Sample Input 1 Sample Output 1

1
10

10

Sample Input 2 Sample Output 2

12345
65432

35882

Pacific Northwest 2020—Division 1 Problem O: Rainbow Numbers 24

Problem P
Reconstruct Sum

Time Limit: 1

On a whiteboard, you have found a list of integers. Is it possible to use all of them to write down a
correct arithmetic expression where one of them is the sum of all the others?

You may not alter the integers in any way (e.g., changing the sign or concatenating).

Input

The first line of input contains an integer n (1 ≤ n ≤ 104), representing the number of integers on
the whiteboard.

The integers on the whiteboard are given over the next n lines, one per line. Their absolute values
are guaranteed to be at most 105.

Output

Print a single integer x which is one of the inputs, and is the sum of all the others. If there’s more
than one such x, output any one. If there are no such values of x, output the string ‘BAD’.

Sample Input 1 Sample Output 1

4
1
6
3
2

6

Sample Input 2 Sample Output 2

4
-2
0
5
-3

0

Pacific Northwest 2020—Division 1 Problem P: Reconstruct Sum 25

Sample Input 3 Sample Output 3

5
1
10
4
2
-3

BAD

Pacific Northwest 2020—Division 1 Problem P: Reconstruct Sum 26

Problem Q
Triangular Collection

Time Limit: 1

Call a set of positive integers triangular if it has size at least three and, for all triples of distinct
integers from the set, a triangle with those three integers as side lengths can be constructed.

Given a set of positive integers, compute the number of its triangular subsets.

Input

The first line of input contains a single integer n (1 ≤ n ≤ 50), which is the number of integers in
the set.

Each of the the next n lines contains a single integer x (1 ≤ x ≤ 109). These are the elements of
the set. They are guaranteed to be distinct.

Output

Output a single integer, which is the number of triangular subsets of the given set.

Sample Input 1 Sample Output 1

5
3
1
5
9
10

2

Pacific Northwest 2020—Division 1 Problem Q: Triangular Collection 27

Sample Input 2 Sample Output 2

10
27
26
17
10
2
14
1
12
23
39

58

Pacific Northwest 2020—Division 1 Problem Q: Triangular Collection 28

